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ABSTRACT 
We introduce UltraBots, a system that combines ultrasound haptic 
feedback and robotic actuation for large-area mid-air haptics for 
VR. Ultrasound haptics can provide precise mid-air haptic feedback 
and versatile shape rendering, but the interaction area is often 
limited by the small size of the ultrasound devices, restricting the 
possible interactions for VR. To address this problem, this paper 
introduces a novel approach that combines robotic actuation with 
ultrasound haptics. More specifcally, we will attach ultrasound 
transducer arrays to tabletop mobile robots or robotic arms for 
scalable, extendable, and translatable interaction areas. We plan 
to use Sony Toio robots for 2D translation and/or commercially 
available robotic arms for 3D translation. Using robotic actuation 
and hand tracking measured by a VR HMD (ex: Oculus Quest), our 
system can keep the ultrasound transducers underneath the user’s 
hands to provide on-demand haptics. We demonstrate applications 
with workspace environments, medical training, education and 
entertainment. 
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• Human-centered computing → Haptic devices; Virtual re-
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1 INTRODUCTION 
Haptics in VR can enhance user experience by moving beyond the 
sense of vision to enable users to interact using physical channels 
and to internalize and understand information via the sense of 
touch. HCI research has investigated many types of haptic devices, 
including controller-based and wearable haptics. However, these 
haptic devices often require special pre-confguration or limited 
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Figure 1: The UltraBots overview: robotic positioning of ul-
trasound transducers for large-area mid-air haptics. 

generalizability of shape-rendering. In contrast, ultrasound hap-
tics can address both accessibility and generalizability problems. 
For example, Ultraleap’s mid-air haptics device [9] uses ultrasound 
transducers for haptic tactile feedback, shape rendering and more. 
Mouth Haptics [19] uses ultrasound haptics for mouth based force-
feedback. As we can see, ultrasound-based haptics hold much po-
tential for haptic approaches for the future of VR development. 

However, one of the limitations of the current ultrasound haptics 
is a limited and fxed interaction area. For example, Ultraleap haptics 
can only cover a 63cm × 48cm × 48cm area, which is inherently 
limiting due to the size of the ultrasound transducers. Because of 
that, the area in which haptic feedback can be rendered is both 
small and stationary which limits many types of applications and 
interactions for VR. On the other hand, due to the expensive cost 
of ultrasound transducers, scaling their size with additional devices 
is impractical. For example, the cost of a single Ultraleap Stratos 
Inspire/Explore [9] is over 5,000 USD which implies that covering a 
2 meter by 2 meter area with ultrasound transducers would cost at 
least 20,000 USD. In addition, the devices have a limited rendering 
height, limiting their ability to render haptic feedback in a 3D space. 

To address this problem, this paper introduces UltraBots, a new 
approach for large-area ultrasound haptics leveraging robotic ac-
tuation. The core idea of our approach is to combine ultrasound 
haptics with robots such as tabletop mobile robots or robotic arms 

https://doi.org/10.1145/3526114.3561350
https://doi.org/10.1145/3526114.3561350


UIST ’22 Adjunct, October 29-November 2, 2022, Bend, OR, USA Anonymous, et al. 

to cover a large, scalable and fexible interaction area, as shown in 
Figure 1. Ultrasound haptics can provide precise, high-resolution 
haptic rendering for specifc areas, whereas the attached robots can 
move based on the users hands and body position, to cover larger ar-
eas when required. To demonstrate our concept, we leverage Sony 
Toio robots, a tabletop wheeled mobile robot that moves along 
2D surfaces. We attach ultrasound transducers on top of the Toio 
robots move the transducers over the area of a 2D surface. Based 
on the hand and position tracking, measured by a VR HMD (ex: 
Oculus Quest), we move these robots underneath the users hands 
to provide haptic feedback on-demand. This approach can also be 
scalable, allowing multiple robots to render haptic sensations for 
both hands simultaneously. 

Additionally, This idea can also be generalized for other robotic 
platforms, like robotic arms. We are also interested in implementing 
this principle using robotic arms to cover 3D space. We demon-
strate this concept through various applications, including medical 
training, workspace environment, education and entertainment. 

Finally, this paper contributes to the following: 
(1) An approach for large-area mid-air haptics by combining 

ultrasound haptic transducors and robotic actuation. 
(2) UltraBots, a system that leverages Sony Toio robots for 2D 

translation of ultrasound transducors for accurate and pre-
cise mid-air haptics and an Oculus Quest for user position 
and hand tracking. 

(3) Application scenarios which demonstrate the possibility of 
large-area ultrasound haptic interactions. 

2 RELATED WORK 
Ultrasound is one of the three primary approaches for mid-air hap-
tics, along with air-jets and laser-based systems [3]. Ultrasound 
haptics have been researched in many facets within HCI. [15, 16] 
use ultrasound haptics for haptic rendering of basic geometry qne 
[11, 19] combines multiple ultrasound haptics for more complex 
and precise haptic rendering. While many of these papers studied 
investigated haptics for computer screens [13, 14], recent work also 
integrates these haptics for VR applications [6, 17, 18]. For example, 
[2] demonstrates ultrasound haptics for VR surgical training and 
[4, 12] use ultrasound haptics with mixed reality HMDs. The main 
limitation of current ultrasound devices is the limited interaction 
volume. Recent work has extended the range of other types of hap-
tic interfaces by integrating them onto robotic arms [1, 20], swarm 
robots [21], or mobile robots [5, 22]. However To the best of our 
knowledge, none of the previous work have investigated the com-
bination of ultrasound haptics with robotic actuation. This paper 
contributes to this new approach that enables the large fexible and 
scalable, mid-air haptic rendering for AR/VR. 

3 SYSTEM AND IMPLEMENTATION 

3.1 Hardware 
We’ll use Sony Toio [7] robots for mobile robotic-based 2D transla-
tions. Toio robots have two wheels and can move within a 55cm 
x 55cm area. As shown in Figure 3, we aim to mount ultrasound 
transducer arrays on top of the Sony Toio robots with 3D printed 
castors. Sony Toios use built-in cameras to track their position on a 
printed patterned mat, enabling us to control the x and y positions 
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Figure 2: System Design to enable 2D translations of ultra-
sound transducers using Sony Toio tabletop robots 

of the robots with high accuracy. Since the maximum weight capac-
ity of a Sony Toio is about 200g, we 3D print a base with castors to 
carry the weight of the transducer. We plan to use multiple robots 
(2-4) for each transducer to enable rapid 2D translations. We plan 
to build two separate devices so that each hand can be tracked 
separately and controlled wirelessly controlled by via a Bluetooth 
enabled PC and Sony Toios. The ultrasound transducers will be 
controlled via wired connections from a PC. 

3.2 Software 
We create a VR environment using Unity [10] that synchronizes 
all of the VR rendering based on user movement, position, hand-
tracking, robot control and ultrasound haptics. We communicate 
with the Toio via a backend Node.js server which provides the posi-
tion and orientation of each robot to Unity and, based on the virtual 
objects shape and position, the ultrasound transducer renders the 
shape of the objects via Unity. The Oculus Quest tracks the users 
hands and based on that information the system moves the robotic 
platform carrying the transducers accordingly. For public demon-
stration purposes, we may investigate a Leap Motion Controller [8] 
attached to the robotic platform to be visible and interactable for 
audiences. 

4 APPLICATION 
We implement a medical training application in which the user can 
touch the human body for massage therapy or surgical training. We 
also demonstrate an application for a workspace environment, such 
as keyboard interactions and user interface interactions. Figure 
3 displays both medical training and workspace applications. For 
entertainment purposes, we explore applications such as playing a 
piano and Whack-a-Mole games. 
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