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Touch and Beyond: Comparing Physical and
Virtual Reality Visualizations

Kurtis Danyluk, Teoman Ulusoy, Wei Wei, and Wesley Willett

Abstract—We compare physical and virtual reality (VR) versions of simple data visualizations and explore how the addition of virtual
annotation and filtering tools affects how viewers solve basic data analysis tasks. We report on two studies, inspired by previous
examinations of data physicalizations. The first study examines differences in how viewers interact with physical hand-scale, virtual
hand-scale, and virtual table-scale visualizations and the impact that the different forms had on viewer’s problem solving behavior. A
second study examines how interactive annotation and filtering tools might support new modes of use that transcend the limitations of
physical representations. Our results highlight challenges associated with virtual reality representations and hint at the potential of

interactive annotation and filtering tools in VR visualizations.

Index Terms—Human-Computer Interaction, Visualization, Data Visualization, Virtual Reality, Physicalization.

1 INTRODUCTION

EW hardware and fabrication technologies are increas-
N ingly making it possible for data visualizations to tran-
scend the limits of page and screen. Immersive visualization
tools [1] promise to use virtual reality (VR), augmented
reality (AR), and other technologies to embed representa-
tions of data in rich environments or in the context of real-
world tasks. Meanwhile work on data physicalization [2]
has highlighted the potential of representing data via real
objects in physical spaces. However the trade-offs associated
with presenting data using these highly immersive virtual
and physical representations remain poorly understood.

Early explorations of data physicalizations suggest that
their tangible nature allows viewers to inspect, mark,
and manipulate them more effectively than on-screen ver-
sions [3] and that viewers may find them more memorable
than visualizations on paper [4]. While current VR and AR
tools are not able to support this kind of tactile feedback
and manipulation, they offer the potential for visualizations
that transcend the limits of physical reality. Because they
are not constrained by manufacturing complexity or even
the limitations of real-world physics, visualizations on these
platforms can easily be created in scales and configurations
that would be impossible with physical objects. Moreover,
they can support new kinds of interaction and manipula-
tion, allowing viewers to reach through visualizations or
dynamically change their form and behavior, while still
retaining many of the characteristics of physicalizations.

In this paper we are interested in determining if VR
versions of physical visualizations can convey some of the
benefits of physicalizations. To answer this question we
conducted two experiments which compare physical 3D bar
charts against virtual copies at two different scales, and then
test whether simple annotation tools can replicate some of
the affordances lost in the transition from physical to virtual.
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We designed this initial examination of the potential of
immersive virtual visualizations by extending Jansen et al.’s
studies of physicalizations [3] to VR environments. We first
describe a new version of Jansen et al.’s original experiment
in which we recreated their physical visualizations out of
Lego and compared them against virtual versions at hand-
sized and table-sized scales. We then explore the addition of
new interactive annotation and filtering tools enabled by the
move to VR. Our results highlight a clear preference among
participants for physical versions of the visualizations, as
well as enthusiasm for the kinds of interactive tools intro-
duced in the VR versions. We also highlight the potential
for VR systems to support new kinds of analysis via simple
immersive interactions.

2 RELATED WORK

Our research builds directly on past work in virtual reality
visualization as well as recent work in data physicalization.

2.1 Virtual Reality Information Visualization

Virtual reality (VR) is by no means a new field of research,
with the first system created by Sutherland [5] in 1968. How-
ever, the debut of the Oculus Rift SDK in 2013, and the sub-
sequent release of consumer headsets such as the HTC Vive
and Windows Mixed Reality devices has renewed interest in
the field. While the scientific visualization community has
long embraced VR for showing 3D data with clear spatial
embeddings, information visualization researchers are now
increasingly looking for novel ways to display data using
immersive VR [6], [7].

Early investigations of abstract data visualizations in VR
typically used either “fishtank” VR or CAVE systems which
rely on head-tracking and stationary displays [8], [9]. As
early as 1993, Arthur et al. [8] examined participants” ability
to trace tree structures using a fish tank VR setup and found
considerable speed and accuracy benefits compared to its
2D, on-screen, counterpart. Later work by Demiralp et al. [9]
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Fig. 1. (From left to right) A virtual room-scale visualization (6.4 m diameter across with 1.7 m person for context), a virtual table-scale visualiza-
tion (64 cm diameter across), and physical hand-scale versions (10 cm diameter across).

further explored the impact of visualizations of different
scales using both fish tank VR and CAVE VR systems.
Their findings highlighted the potential of VR visualization
generally, while noting that fish tank VR was a better fit for
most contexts, especially when visualizations were smaller
than viewers’ bodies.

In the last few years, however, the increasing availability
of VR and AR head-mounted displays (HMDs) has resulted
in a groundswell of new immersive information visual-
ization tools. These include systems like Donalek et al.’s
iViz [6] which adapt traditional abstract visualizations like
scatterplots to shared 3D spaces, as well as more complex
tools like Cordeil et al.’s ImAxes which leverage the
flexibility and openness of VR environments to create new
abstract visualization types.

However, the potential benefits and trade-offs associ-
ated with various VR design choices for abstract data vi-
sualization remain poorly understood. Initial studies have
highlighted the effectiveness of immersive VR environments
with stereoscopic and motion-based depth cues for particu-
lar kinds of visualization tasks including graph analysis [11].
Experiments have also shown that visualizations displayed
on HMDs compare favorably against much more costly
CAVE systems [12]. Similarly, work on immersive unit
visualization has showcased the potential for VR to sup-
port transitions between multiple scales, supporting both
high-level analysis and detailed examination of individual
data points within the same continuous environment. So
far, however, this research gives little guidance as to which
scales are the most effective for various tasks and datasets.

2.2 Physical Visualizations

Meanwhile, work on data physicalization has identified a
variety of benefits for immersive physical instantiations
of data [2]. Interestingly, this growing body of research
attributes many of the positive characteristics of these phys-
ical representations to their ease of manipulation and ex-
ploration, as well as their strong physical and emotional
presence — traits which VR and AR tools are increasingly
able to approximate. As such, our experiments are heavily
inspired by fundamental work by Jansen et al. which
compared the performance of physicalizations against on-
screen equivalents and investigated multiple factors (includ-
ing stereoscopic depth cues and tangible manipulation) that
contribute to the performance differences between them.

Studies by Berard and Louis. have also begun to
explore the interstitial space between physical and virtual
systems, examining novel “handheld perspective-corrected
displays” which can stereoscopically project complex in-
teractive puzzles and other objects onto simple volumetric
props. Interestingly, participants in Berard et al.’s studies
were able to solve complex 3D puzzles faster and more accu-
rately when using projected virtual objects than when using
physically printed ones — likely because the virtual objects
did not suffer from the poor contrast, occlusions, and other
shortcomings of the physical materials. However, other
recent studies have highlighted some challenges related to
viewers’ perception of physicalizations. For instance, Jansen
and Hornbaek have shown consistent biases in viewers’
perception of physicalizations that use size as a physical
variable (reminiscent of similar biases in 2D and 3D on-
screen representations). Similarly, Sauvé et al. have
shown that the orientation and layout of a physicalization
can drastically change how viewers interpret it.

3 GOING BEYOND THE PHYSICAL

Data physicalizations allow viewers to leverage their real-
world perceptual and physical abilities to inspect and
interpret data, using interactions that build on familiar
metaphors and expectations from the physical world. Initial
work in this space highlights how physicalizations can
provide a variety of benefits, including support for physical
manipulation and locomotion [2] and may also encourage
greater memorability [4] and engagement [18]. However,
physicalizations can be complicated, difficult, and imprac-
tical to construct — especially as their scale and degree
of interactivity increases. Even relatively simple tabletop
systems like EMERGE and inFORM [20], for example,
required long-term, concentrated engineering efforts to de-
velop and maintain. Meanwhile the few examples of even
larger room- and building-scale visualizations are mostly art
installations, whose goals are aesthetic or communication-
oriented, rather than analysis-focused.

VR systems, meanwhile, offer many of the advantages
of physicalizations, providing increasingly vivid immersion
and presence facilitated by binocular and motion-based
depth cues, realistic interactions, and increasing levels of
visual realism — without the prohibitive costs. As a result,
VR tools offer the opportunity to create kinds of spatially-
embedded visualizations that would be difficult or impossi-
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ble in the physical world. For example, virtual environments
can accommodate visualizations at extreme scales and lev-
els of detail without material costs or space constraints.
Similarly, virtual visualizations can support interactive ma-
nipulations that would be limited by the physics of real-
world objects, including dynamically changing visualiza-
tions’ materials, sizes, or transparency. Virtual environments
may also make it easier to design and implement tools
and interactions to support common tasks like filtering,
selection, and annotation.

As an initial exploration, we examine the potential for
VR interfaces that build on the kinds of simple chart designs
and interactions that already show promise in the physical
world. Specifically, we use virtual reality prototypes to
recreate and extend foundational studies of simple data
physicalizations. This allows us to examine the impact of
larger visualization scales and test new kinds of interactive
tools, while still preserving many of the norms associated
with simple, physical charts.

4 EXPERIMENTS

We based both our visualizations and our experiment de-
signs on those used by Jansen et al. [3] in their early studies
of physicalization use. In these studies, participants used
small physical 3D bar charts as well as 2D and 3D on-
screen versions to complete a series of simple data analysis
tasks. The studies also compared the same physicalizations
against on-screen versions that used stereo depth cues and
supported rotation using physical props. Based on these
explorations, Jansen et al. concluded that the advantages
of the physicalizations likely related to participants” ability
to manipulate and inspect the objects while simultaneously
using their fingers to mark and compare items of interest.
This direct interaction, combined with the high visual fi-
delity of the physical object, helped participants compen-
sate for problems like occlusion that routinely plague 3D
visualizations on screens.

VR visualizations, unlike their 3D on-screen counter-
parts, have the potential to offer many of the same kinds
of interactions, allowing viewers to manipulate and inspect
virtual objects much as they would physical ones. Recent VR
systems also offer levels of immersion and visual fidelity
that are increasingly able to approximate the appearance
and behavior of real-world settings.

4.1 Visualization Designs

To examine these tradeoffs further, we created a variety of
virtual and physical charts which mirror the bar charts cre-
ated by Jansen et al. . Like the originals, our charts
featured a 10 x 10 array of bars with a white
base and black labels. We also retained the same bar widths,
spacing, aspect ratio, and color palette. The back sides of our
VR charts were entirely transparent, with floating axis lines
and values. To increase legibility, we added higher-contrast
tick marks on the bars themselves. We also increased the
size of the category labels and aligned them more closely
with their respective bars. As in Jansen et al.’s study, we
used this chart template to generate a variety of different
charts each using 10 years worth of development statistics

Fig. 2. Jansen et al’s 3D on-screen visualization and physicalization |3].

from Gapminder [21] organized by country. We opted to use
percentages for all axes, rather than raw counts or intervals,
to reduce the potential for confusion.

We initially created three different versions of these
charts in VR to examine the impact of visualization scale.
The smallest of these virtual charts were hand-scale, mea-
suring roughly 10 cm across. While the overall form of the
visualization mirrored of Jansen et al.’s original stimuli, we
increased the dimensions by 25% (from 8 cm to 10 cm) in
order to ensure the legibility of labels in VR. These resulting
charts are also similar in scale to the VR small-multiple bar
charts used in recent work by Liu et al. [22]. Next, we created
table-scale versions which measured 64 c¢m across, similar
to the size of tabletop bar-chart displays like EMERGE [[19]
(Figure 3h) and shape-changing displays like Relief [23],
Tangible Cityscape [24] and inFORM [20]]. We placed these
table-scale visualizations atop a virtual plinth with a default
height of 1 m. We also created room-scale versions of the vi-
sualizations, which measured 6.4 m to a side. This scale was
inspired by large-scale installations like Richard Burdett’s
population-density models of major cities [25], the walkable
age pyramid (Figure 3p) created by Atelier Briikner [26],
and the eCLOUD [27] and airFIELD [28] sculptures — all of
which allow viewers to explore data by physically walking
through, under, and around it. Finally, we created physical
hand-scale charts with the same 10 cm dimensions as our
VR versions. While Jansen et al. constructed their original
charts using laser-cut and painted acrylic, we built ours
out of Lego bricks with custom 3D-printed baseplates. This
allowed us to construct new charts more quickly, while also
precisely matching the dimensions of our 10 cm virtual
hand-scale charts. We excluded 2D versions of the charts,
which have already been examined extensively in Jansen et
al.’s work, and instead focused explicitly on comparisons
between physical charts and their VR counterparts. We
provide more detailed descriptions of the specific designs
used in each of our experiments below.

4.2 Virtual Environment

We conducted the VR component of our experiments using
a test environment that we implemented using Unity which
supports a variety of VR headsets including the HTC Vive
and Windows Mixed Reality devices. For our studies, we
used an HTC Vive installed in a 2.5m x 2.5m tracked area in
an open-plan research space. Related studies have explored
the use of alternative control schemes for VR interaction,
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Fig. 3. (A) EMERGE tabletop display [19]. (B) Walkable age pyramid
(Exhibition Design: ATELIER BRUCKNER, Photography: Michael Jung-

blut) [26].

including gestural hand-tracking [29], [30]. However, we
chose to use Vive controllers and Vive trackers for input,
based on recent studies that suggest they have a lower learn-
ing curve and more stable tracking than gesture-recognition
systems like the Leap Motion controller [31]]. Participants
held a controller or tracker in each hand at all times during
the studies. In the virtual environment, the tracker appeared
as a hand-scale visualization and the controller appeared as
a 30 cm virtual wand in the virtual hand-scale condition or
as a 30 cm ruler in the virtual table-scale condition.

4.3 Tasks

We used the same three types of basic chart-reading tasks
introduced by Jansen et al. in their original study:

Range Task: Indicate the range of values for a country.
Order Task: Sort the values for a year in ascending order.

Compare Task: Locate three specific country-year pairs and
determine which one has the lowest value.

Jansen et al. used a tablet on which participants could
see the study prompts and record their responses. Because
we were concerned about participants” ability to enter re-
sponses on a virtual version of this same interface, we
instead displayed task prompts on a question board
attached to one of the controllers for the virtual conditions.
In VR, participants could summon or dismiss the question
board as needed. When using larger visualizations the ques-
tion board appeared to the right of one of the rulers. For
the smaller hand-scale visualizations the board appeared in
front of the virtual wand, so as not to obscure the chart. Par-
ticipants were free to choose either hand to hold the board.
In the physical hand-scale condition we asked the questions
out loud. Upon completing each task, participants reported
their answers verbally to an experimenter who was seated
1-2m away. This experimenter manually recorded partici-
pant timing data and advanced participants through tasks.
Timing started as soon as the experimenter started reading
the question, and ended when the participant uttered the
word “confirm”. We calculated error using the same method
as Jansen et al. For range tasks, the error was the average
absolute difference between the participant’s min and max
values and the true values, divided by the total axis range.
For order tasks, the error was the normalized Kendall Tau
distance (the number of pairwise disagreements) between
the answer and the true order. For compare tasks, the error
was 0 or 1, based on correctness.

What is the range
of Tuvalu?
(min, max)

Fig. 4. Question board design and location relative to the ruler tool (left)
and hand-scale visualization (right).

4.4 Pilot Study

To test the viability of the three different visualizations
scales, we first ran a VR-only pilot study in which we asked
9 participants to use and compare virtual hand-scale, virtual
table-scale, and virtual room-scale visualizations. Each pilot
participant completed one task of each type (range, order,
compare) at each scale, then completed an exit questionnaire
in which they discussed their experience and impressions of
using each scale.

We found that for all scales and tasks participants in our
study performed more slowly than participants in Jansen
et. al.’s original experiment [3]. We also found that while
there was no clear difference in performance between the
virtual hand-scale and virtual table-scale visualizations, the
virtual room-scale condition was considerably slower than
the other two. Participants’ feedback echoed this, with all
participants reporting that they found either the virtual
hand-scale or virtual table-scale visualizations the easiest to
use, with the majority preferring virtual table-scale. Partic-
ipants responded more negatively to the virtual room-scale
condition, noting that while the large sizes of the bars made
it easier to differentiate very similar values, navigating and
examining the chart was considerably more difficult. Across
all three conditions, much of the feedback we received
from participants reflected a desire for better tools. Four
participants specifically asked for the ability to mark and
select bars, while another suggested filtering tools to hide
rows or columns that obscured their view.

5 EXPERIMENT ONE — PHYSICAL VS. VIRTUAL

In our first full experiment, we compared the physical hand-
scale charts against their virtual counterparts at both hand-
and table-scales (Figure 5). This allowed us to examine
how changes in scale and tangibility impacted participants’
ability to perform basic chart reading and analysis tasks and
how it changed their overall experience. While we include
a virtual table-scale condition, practical challenges associ-
ated with constructing enough table-scale physical charts to
properly counterbalance our study conditions prevented us
from including a physical table-scale condition.
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Fig. 5. Experiment 1 stimuli: (A) physical hand-scale chart, (b) virtual hand-scale chart, and (C) virtual table-scale (with 1.7m person).

5.1 Visualizations

We modeled our physical hand-scale visualizations after
Jansen et. al.’s. Each featured a 10x10 array of bars created
out of 1x1 Lego bricks topped by 1 x 1 Lego plates to a
maximum height of 10 bricks. We 3D printed custom 10
x 10 white Lego base plates that had the same relative
spacing intervals as the charts created by Jansen et. al.
We then mounted these charts on 5 cm thick foam blocks
and attached printed labels to them. We printed the axes
on transparencies and attached these to the back of the
foam. The final physical charts measured 10 cm across and
weighed between 152 g and 300 g depending on the size
of the bars (somewhat less than Jansen et al.’s smaller 8 cm
charts, which weighed between 270 g and 350 g). Because of
the fixed thickness of Lego plates, our charts have coarser
vertical resolution than Jansen et al.’s. Additionally, we
spaced the tick lines for the data set at intervals 1 Lego
plate thick. As a result, we adapted our task prompts to
ensure that no tasks were ambiguous or overly simple
given this rounding of the bar heights. To preserve the
comparability between the physical and virtual charts, we
adapted the size, appearance and functionality of the virtual
hand-scale visualizations in this study to match the Lego
versions. This entailed adjusting the bar colors, bar heights,
and tick marks to match the coarser vertical resolution of
Lego charts and the colors of the Lego bricks as well as
restricting virtual functionality to operations that could also
be performed on the physical charts to reduce confounds.
To more closely approximate the experience of holding a
physical chart, we attached a Vive Tracker to a foam block
with the same dimensions as the ones we used for the Lego

versions (Figure 5p). This allowed participants to use the

foam block to hold, rotate, and manipulate the virtual chart.
The block and Vive Tracker together weighed 103 g, and its
balance and heft felt similar to the lighter physical charts.

For the virtual table-scale, we used the same 64 cm
width as in the pilot and again adjusted the bar heights,
tick marks, colors, and spacing to match the physical charts.
Before each study we adjusted the height of the plinth
based on feedback from the participant to ensure that the
visualization was easy for them to see and reach.

Using these three templates we created matching sets
of charts for each condition using 6 different Gapminder
datasets, plus a unique training chart used for each con-
dition. Due to the virtual room-scale visualizations’ poor
performance and negative feedback in the pilot study, we
did not include it in the full experiment.

5.2 Procedure

Our independent variables included the 3 conditions (phys-
ical hand-scale, virtual hand-scale, and virtual table-scale)
and 3 task types (range, order, compare). Each participant
completed 6 blocks of tasks (two in each condition) each
using a different chart. Within each block, participants com-
pleted two tasks of each type, for a total of 36 trials. We per-
muted conditions and tasks using a balanced Latin square.
We also permuted the order in which we presented charts
using a second independent Latin square. Participants saw
each chart for only one block.

We included a training block at the beginning of the
study where we asked participants to perform each task
type once in each different chart condition. During this
training block we helped participants adjust the VR equip-
ment to ensure a good fit and appropriate interpupillary
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distance, adjusted the table-scale visualization to a com-
fortable height, and explained how to perform each of the
task types. We allowed participants to take a break and
remove the HMD after every 3 tasks (half of a block) as
well as between blocks. Afterwards we asked participants
to complete a post-study questionnaire. Most participants
took approximately 1 %2 hours to complete the study.

We recruited a total of 18 participants through internal
university email lists and via snowball sampling. The major-
ity of participants reported some prior experience with data
visualization (14/18). Most also had some VR experience
prior to the study (13/18). Eleven reported experience both
with data visualization and VR. In total we recorded 648
trials: 18 users x 3 main conditions x 2 blocks x 3 tasks X
2 repetitions.

5.3 Analysis

We preregistered both our study design and analysis be-
fore beginning the experiment. Our registration is available
at: https://osf.io/vsz8m and Jupyter notebooks containing
our complete time and error analyses are included in our
supplementary materials.

We analyze our results using estimation techniques and
and report results using confidence intervals (Cls) as is
consistent with recent APA guidelines [32]]. All confidence
intervals, both in the charts and in the text are 95% bootstrap
confidence intervals. This use of pre-registered studies and
confidence-interval comparison in lieu of null hypothesis
significance testing reflects emerging best practices in a wide

variety of fields [33], [34].

5.4 Results

Error rates were low across all tasks, conditions, and partic-
ipants. As a result, our quantitative results focus predomi-
nantly on timing. We also report qualitative observations as
well as results from our post-study questionnaire.

Error Rate. Across all conditions the mean error rate
for both range and order tasks (Range= 0.09, Order=0.04)
was very low. We saw higher error rates for the compare
tasks (Compare=0.1037) though this is likely due to the
binary nature of the questions.

Time on Task. We computed average time-on-task by
participant for each task and condition (Figure 7). For
range tasks, all conditions produced similar times, with
the physical hand-scale chart being marginally faster than
both virtual conditions (Figure 8}top). However, there was
a clear difference in performance in both order tasks (Fig]
center) and compare tasks bottom), where
the physical hand-scale chart was markedly faster than
either virtual condition. For order tasks, participants were
more than 20s faster on average with the physical hand-
scale chart (43.3s, CI = 39.1s, 47.3s) than both the virtual
hand-scale (74.7s, CI = [64.8s, 85.1s]) and the virtual table-
scale (69.5s, CI =[61.8s,77.2s]). This pattern persisted for
the compare tasks, with even larger differences between
the physical hand-scale chart (33.6s, CI = [28.6s, 38.9s]) and
the virtual hand-scale (56.6s, CI = [49.2s, 65.1s]) and virtual
table-scale (65.7s, CI = [56.6s, 76.4s]) versions.
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Fig. 6. Experiment 1. Post-study survey results. Participants ranked the
three chart types based on their perceived ease of use, speed, which
they felt they performed best with, and which they would share with
others. Ties were possible, and several participants ranked both physical
hand-scale and virtual table-scale as the best.
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Fig. 7. Experiment 1. Time-on-task for each condition x task combina-
tion. Error bars show 95% Cls.

5.5 Feedback and Observations

We found that all participants chose to hold both the phys-
ical and the virtual hand scale visualizations with their
non-dominant hand so that they could point at bars with
their dominant hand. This is consistent with prior work
with VR props and worlds-in-miniature and human
motor behavior studies [36], in which users often used
their non-dominant hand as a reference frame while using
their dominant hand to perform finer-grained operations.
When using the physical hand-scale charts, all participants
actively touched and tracked bars using the fingers on their
dominant hand, much like participants in Jansen et al.’s
study [3]. Across all scales, participants seldom used rulers
for measuring, and instead used them as a pointing device
to help track and recall specific bars. Five participants were
comfortable with clipping through the virtual table-scale
visualization with their headset and body as it helped them
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Fig. 8. Experiment 1. Pairwise comparisons of time-on-task for each
condition x task combination. Error bars show 95% Cls.

see bars that were obscured by taller bars. No participants
showed any concern about clipping through the bars with
the virtual ruler.

Overall, 9 participants voiced a strong preference for the
physical hand-scale visualizations over the other conditions,
with several noting that they preferred the ability to phys-
ically touch and manipulate it with their hands. However,
participants also noted some drawbacks, including that the
visualizations’ relatively small size made it difficult to see
bars near their center. In contrast, participants expressed a
common dislike for the virtual hand-scale, and no partici-
pant preferred it over other scales. Six participants preferred
the virtual table-scale with 2 participants citing the ability
to more easily examine and read the central bars as the
primary benefit. However, 7 participants disliked that the
larger size required more physical movement in order to
accurately answer the questions. Finally, 2 participants did
not list any specific preference, with both stating that each
chart may do well in different contexts.

Similarly, in their post-study feedback, the majority of
participants ranked the physical hand-scale condition as the
easiest to use and fastest of the three (Figure ). A majority
also ranked the physical hand-scale charts as the one that
they performed the best with and as their preferred version
for sharing with others. For all questions at least two thirds
of participants rated physical hand-scale as the best. On the
other hand, most participants rated virtual hand-scale as the
worst for each question.

Fourteen of the participants specifically expressed a de-
sire for better tools for manipulating the VR visualizations.
Six suggesting adding highlighting or marking tools that
would allow them to keep track of bars, while 7 asked for
mechanisms that would let them filter or hide bars they
were not interested in.

6 EXPERIMENT TWO — ANNOTATION & FILTERING

Based on strong feedback requesting additional tools, we
also conducted a second experiment to explore how virtual

Ry
R RN

ESCVN

¢
7
Lz

Fig. 9. The drawing stylus (top), highlighting wand (middle), and filtering
volume (bottom).

annotation and measuring tools might alter the experience
of using VR visualizations. Current VR tools, even experi-
mental ones, lack the precise haptic feedback mechanisms
necessary to enable the kinds of manual exploration, com-
parison, and marking with the fingers that are possible with
physical charts. In contrast, however, virtual environments
make it much easier to implement simple interactions which
might support many of the same strategies. In response
to feedback from participants in our pilot experiment, we
chose to examine two simple mechanisms for annotating
charts that might serve as alternatives to touch-based com-
parison and marking. We also explored the potential for
simple implicit filtering tools to combat the issues with
occlusion that impede the legibility with 3D charts in both
physical and virtual settings.

6.1 VR Tools

Tools for Annotation. We designed two annotation tools —
a drawing stylus and highlighting wand — which differ
primarily in terms of their expressiveness and complexity.
The drawing stylus (Figure 9-top) is a simple 3D paintbrush,
similar to those in VR drawing applications like Google’s
Tilt Brush [37]. The stylus allows viewers to draw strokes in
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midair, creating flexible free-form annotations. These strokes
are not affected by gravity or collisions and remain anchored
in space relative to the chart. Viewers can create new strokes
by holding the trigger and then drawing in space and
around objects. The stylus produces yellow strokes about
1.5 ecm across for the table scale and smaller 1 cm strokes for
the hand scale. The strokes have no shading, ensuring high
contrast against the more muted colors in the visualizations.
However, we allow strokes to cast shadows on the chart
itself, further reinforcing the spatial relationship between
them. Viewers can also erase strokes using a second tip,
summoned by pressing the touchpad on the controller.

The highlighting wand (Figure 9middle) is a more
minimalist tool which supports highlighting but not more
flexible annotation. Viewers can highlight bars one at a time
by touching them with the wand and pressing the trigger.
Highlighted bars receive a bright green outline visible from
all directions but retain their original base color. Viewers
can toggle off highlights by touching the wand to a bar and
pressing the trigger a second time.

Tools for Filtering. We implemented support for filtering
via filtering volumes (Figure 9tbottom) — transparent cylin-
drical regions 20 cm in diameter and 75 ¢cm long attached
to each virtual controller which envelop the area around
the viewers” hand and arm. When a viewer reaches into the
visualization, any bars that collide with the cylinder become
semi-transparent, making it possible to examine objects
behind them. We incorporated filtering volumes into all
of virtual tools, including the drawing stylus, highlighting
wand, and virtual ruler. For virtual rulers, we aligned the
volume with the tool’s left edge. This allowed viewers to
use the ruler to prune the visualization, selectively hiding
small sets of bars or deploying the volume as a cutting
plane to slice through the entire chart. For the drawing sty-
lus and highlighting wand we included a filtering volume
around the annotation tool, allowing viewers to annotate
and highlight near the center of the visualization without
occlusion from chart elements in the foreground. Based on
feedback from pilot studies, we chose to make the volume
slightly opaque rather than completely transparent. This
slight opacity helped viewers to more precisely understand
the extent of the volume and how it would behave.

6.2 Procedure

Our second experiment used the same overall tasks and
procedure as the first. While the general design of the
visualizations did not change from the first experiment,
we generated a fresh set of charts — again using data
from Gapminder. To support more precise highlighting and
annotation, we also increased the size of the virtual hand-
scale charts to 24 cm and allowed participants to move and
manipulate them using a Vive controller instead of the foam
block and Vive tracker we used in the first experiment.
These changes provided more space to use the tools and
also helped reduce wrist strain. Because we did not include
a physical condition, we did not constrain bars to discrete
Lego height intervals, instead using the full vertical resolu-
tion of the bars. We also added more visible tick marks to
both the virtual hand-scale and virtual table-scale charts.
We included six conditions (3 tools x 2 scales) each
with three tasks. We used 6 different datasets and coun-

Trial Times
Experiment 1
Physical 5 _._'
Hand —_—— °
Table - —— *
Experiment 2
Filter - —— e
- Task
S Draw - —_—— * e Compare
T Order
Highlight - e T =— e Range
Filter - —_—— -
2@
2 Draw - —_—— *
'_
Highlight 4 —— ¢

Fig. 10. Time-on-task for each scale (hand, table) x tool (filter, draw,
highlight) x task (compare, order, range) combination. Results from
Experiment 1 are shown for context (top). Error bars show 95% Cls.

terbalanced condition order and dataset order using two
independent Latin squares. We used the same task types and
measurements as the first study. The virtual environment
and question board remained the same.

We recruited 12 participants for the second experiment.
Seven participants had experience with creating or viewing
data visualizations. Six of the participants had no experience
with VR before this study, but 11 participants had experi-
ence with video games in various genres. We refer to these
participants below using the codes P1 to P12. As in the first
study, participants had the opportunity to take a break in
between task blocks, each of which took less than 5 minutes.
The experiment lasted 50 minutes on average, with the time
spent in VR being roughly 30 minutes. In total we recorded
216 trials: 12 users x 3 tools x 2 scales x 3 tasks.

6.3 Results

Error Rate. As in the first study, participants’ error rates were
low (Range= 0.0184, Order=0.1037, Compare= 0.1111) and we
saw no relationship between error rate and the scale or tool.

Time on Task. As in the previous study, range tasks were
markedly faster than the order or compare tasks (Figure 10).
However, we saw little discernible difference between the
six conditions, and neither drawing or highlighting seems
to lead to a systematic increase or decrease in task time.
Overall, results for the majority of conditions and tasks
tended to be faster than those from participants in Exper-
iment 1, suggesting that the addition of these new tools did
not distract from or otherwise complicate the tasks.

Survey Results. Responses from the post-study survey
showed that a majority of participants (9 of 12) preferred
the virtual table-scale visualization over the virtual hand-
scale (Figure 11). Advocates for the table scale argued that
it was more stable and more comfortable to work around,
with P11 calling it “easier to comprehend” and P8 noting
that “because you can move around it’s more comfortable
to view the charts”. Others stressed that the table reminded
them more strongly of a physical object, with P1 writing
that the table-scale made it “easier to spatially keep track
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Most participants preferred the table-scale visualizations ...

Table-scale
Hand-scale

4 .. 6
Number of Participants

... and preferred the Flle[allis]ailsle AE1glel| over the stylus.
I
Highiighting Wand

Drawing Stylus
Mixed

0 2 4 6 8
Number of Participants

Table + Wand was also most participants’ favorite combination.

Highlighting Wand  Drawing Stylus Filter Tool Only
Easiest to Use 7 2 1

Performed Best With 8 2
Best for Sharing 7 4
Hardest to Use 3
Easiest to Use
Performed Best With
Best for Sharing i
Hardest to Use 2 I 6

0 5 0 5 100 5 10
Number of Participants

Hand-scale

Fig. 11. Experiment 2. Post-study survey results by scale and tool.

of things in my mind. [It] felt more hands-on, like I was
interacting with something physical/tangible.”

When annotating, the majority of participants (7) pre-
ferred the highlighting wand over the drawing stylus, while
2 participants indicated a mixed preference. P12 responded
that both tools were equally helpful while P9 responded that
they used the tools infrequently and only on the compare
tasks. Overall, participants most strongly preferred the com-
bination of table-scale visualization and highlighting wand,
and most disliked the handscale with filtering only. Several
participants (P4, P10, and P12) specifically noted that they
had a hard time remembering bars of interest when they did
not have access to either annotation tool.

6.4 Feedback and Observations

In their feedback, all 12 participants expressed a preference
for some combination of filtering and annotation tools,
rather than a static visualization. Moreover, we observed
that all participants actively used some or all of the tools
to inspect the visualization and to help externalize their
thinking processes.

During the compare task, all 12 participants used the
annotation tools as a way to remember important bars,
either by highlighting them or indicating them with a simple
visual mark like a line or dot. One participant initially at-
tempted to write numerical values on bars but gave up after
finding that writing with the Vive controller was difficult.
Generally, participants used marking and highlighting tools
in much the same way that participants in Experiment 1 (as
well as Jansen et al.’s original study) used their fingers —
marking important elements as a form of external memory
that allowed them to identify and then revisit those values.

A smaller subset of participants annotated during the
range tasks, with 8 participants using the highlighting wand
and only 5 participants using the drawing stylus. Those
who used the stylus adopted a similar set of strategies to
the compare task, with 4 drawing dots and lines to mark
important values and 1 writing numerical values directly
on the chart.

In the ordering task, we saw the reverse, with 9 par-
ticipants annotated with the drawing stylus, while only 4
highlighted with the wand. Here, participants’ used the
stylus in several different ways: drawing a lines through
or on top of the row of interest, drawing a mark on the
label for that row, and marking bars as they answered
aloud to ensure they did not miss any. Those who used the
highlighting wand generally marked bars in the relevant
row, then used the filtering volume to single that row out.
Only one participant used this highlighting method for the
hand scale.

7 DISCUSSION

Across both studies, virtual hand- and table-scale visualiza-
tions exhibited very similar performance, but the table-scale
was much more favorably received by participants. Both
sizes were small enough that viewers could examine the
entirety of the visualization using relatively small physical
movements. However, the larger table-scale visualizations
allowed viewers to assess differences in bar heights more
easily. Participants also seemed to prefer physical loco-
motion around the static table-scale visualization to the
combination of physical movement and manipulation nec-
essary with the hand-scale chart. Moreover, the relatively
low-resolution displays and imperfect position tracking of
current-generation VR headsets created a number of imper-
fections in the hand-scale visualizations that may have made
them less convincing to viewers than either the physical
charts or the larger table-sized virtual ones.

The poor performance and mixed responses to the big-
ger room-scale visualizations in our pilot also reflect the
underlying challenges associated with exploring and ma-
nipulating visualizations at large scales and over physical
distances [38]. Furthermore, the larger depth and height as
well as diminished reachability of visualizations at this scale
also limit the annotation, filtering, and data manipulation
tools that can be used with them. However, VR and AR
visualizations that support transitions between multiple
scales [13] may have the potential to balance the trade-offs
between both large- and small-scale approaches.

7.1 VR vs. Physicalization

In comparison to their physical counterparts, participants
generally performed more quickly when using physical
charts. Given the current state of VR and tools, visual
realism and the lack of tactility represent the main divides
still separating physicalizations from VR visualizations.
The degree to which visual realism plays a role in
the perception or interpretation of abstract visualizations
remains open for debate. Based on their evaluations, Jansen
et al. speculated that a lack of realism might hinder per-
formance for onscreen representations. However, Berard et
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al.’s work on handheld projection-mapped displays high-
lights how the lack of occlusion and higher contrast of a
virtual object can actually improve performance over using
a physical one [15]. Still, specific limitations of modern
VR hardware like the vergence-accommodation conflict —
wherein the apparent focal depth of virtual objects diverges
from the actual distance of the VR display from the eye
— may indeed hinder viewers’ ability to comfortably use
certain virtual visualizations [39]. Moreover, these effects are
the most pronounced for nearby objects like our hand-scale
visualizations, where incorrect focus cues are more likely to
lead to fatigue [40].

Finally, our results echo Jansen et al.’s initial results
which suggest that support for direct touch and physical
manipulation were likely the biggest advantage of their
physical prototypes [3]. Haptic displays or shape-changing
interfaces capable of replicating this tactility for VR and
AR visualizations remain a very distant prospect. While
realistic real-time visual inspection using head tracking is
already possible in VR, physical and tactile interactions
with hand-scale visualizations remain less convincing. For
example, current VR hand-tracking and haptic systems still
lack the feedback necessary to support the active bi-manual
manipulation of complex objects. We think this disparity
may at least partially explain participants’ strong preference
for table-scale views (where VR tools can already provide a
more satisfying approximation of their real-world counter-
parts) over hand-scale views where the gap remains wider.

However, participants’ active use of annotation tools and
virtual props (like the rulers in our studies) to perform many
of the same kinds of marking and manipulation operations
seen with physicalizations is promising. These findings sug-
gest that tools and interactions which enable viewers to in-
spect, manipulate, and externalize their thought process vi-
sually on top of VR and AR visualizations could eventually
provide many of the same advantages as physicalizations.
Hybrid techniques, which combine virtual and physical
approaches by fusing tactile input and output devices with
more elaborate VR and AR visuals [12], are also encourag-
ing. Ultimately, static 3D barcharts like those we used are
unlikely to outperform either 2D or 3D visualizations that
include interactive features like dynamic filtering or tooltips.
However future physical, virtual, and augmented reality
visualization tools have the potential to close that gap by
incorporating more dynamic and interactive controls.

VR and AR visualizations also allow for interactions
that are much more difficult, or impossible with physical-
izations. For example, filtering and data reorganization are
trivial in a virtual context, in stark contrast to the extensive
physical implementation required for systems like Jacques
Bertin’s reorderable physical matrices [41]. Physical system
like Microsoft’s Tenison road charts, which represented
community data using live pie charts [42], also often require
complicated mechanical components to represent changes
in data. Virtual representations of these same systems are
comparatively much simpler to realize.

8 CONCLUSION & FUTURE WORK

Our results highlight several advantages that physicaliza-
tions can offer over their virtual counterparts, and empha-

sizes the potential value of tangible manipulation for simple
chart reading tasks. Within the space of virtual charts we
find clear advantages for virtual table-scale visualizations,
which strike a balance between readability and reachability
that allows viewers to both examine and manipulate them
easily. Our findings also showcase the value of virtual
annotation tools,which can potentially provide many of the
benefits typically associated with data physicalizations to
their VR equivalents.

However, research on both physicalization and immer-
sive XR visualization are still emerging fields. Consequently,
considerable additional work is needed to understand the
advantages and disadvantages of these techniques for more
complex and realistic visualizations, interaction techniques,
tasks, and scales. With that in mind, VR visualization tools
represent an opportunity to leverage many of the benefits of
the physical world, while also transcending its limitations.
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