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Gestural interaction with freehands and while grasping an everyday object enables always-available input. To sense such

gestures, minimal instrumentation of the user’s hand is desirable. However, the choice of an efective but minimal IMU

layout remains challenging, due to the complexity of the multi-factorial space that comprises diverse inger gestures, objects

and grasps. We present SparseIMU, a rapid method for selecting minimal inertial sensor-based layouts for efective gesture

recognition. Furthermore, we contribute a computational tool to guide designers with optimal sensor placement. Our approach

builds on an extensive microgestures dataset that we collected with a dense network of 17 inertial measurement units (IMUs).

We performed a series of analyses, including an evaluation of the entire combinatorial space for freehand and grasping

microgestures (393K layouts), and quantiied the performance across diferent layout choices, revealing new gesture detection

opportunities with IMUs. Finally, we demonstrate the versatility of our method with four scenarios.

CCS Concepts: · Human-centered computing → Human computer interaction (HCI); Interaction techniques;

Gestural input.

Additional Key Words and Phrases: Gesture Recognition; Hand Gestures; Sensor Placement; IMU; Objects; Design Tool

1 INTRODUCTION

In situations found in everyday life, people’s hands can be free, but are often times also busy with objects they
hold, carry, or use. Interaction techniques for always-available input [77] should be designed considering these
settings. Prior work in HCI has established the design foundation of freehand and grasping microgestures: subtle
inger gestures that can be performed with free [12] and busy hands [82, 83, 102]. These gestural techniques enable
eyes-free, always-available interaction in demanding situations. However, implementing such input solutions is
challenging, and it becomes even more complex if the recognition system needs to recognize microgestures in
both free-hand and busy-hand conditions. Apart from the numerous spatial conigurations that are possible with
the dexterous movement of multiple ingers, the recognition system also needs to account for occlusions that are
typically created when hands are occupied. These challenges make the deployment of optical sensing techniques
very demanding [66].
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Fig. 1. We present a data-driven method for designing efective microgesture recognition systems that only require a sparse
set of IMUs. (a) The method builds on an extensive microgestures dataset that includes Freehand and Grasping conditions,
collected using a customized dense IMU setup. (b) A design tool helps designers to rapidly select sparse IMU layouts for a
desired set of gestures and optional constraints. (c) It informs efective sensing solutions with minimal instrumentation for a
broad variety of applications.

One approach to address the challenges of hand occlusion includes extensive hand instrumentation. Prior
work has demonstrated promising results for hand pose reconstruction while manipulating objects. For instance,
Han et al. achieved this by employing deep learning combined with markers attached all over the hand [33].
Yet, extensive hand instrumentation is undesirable for practical use, as it will hinder the user going about their
other everyday tasks. Other work has shown promising results by making use of sparser hand instrumentation,
with only one or a few Inertial Measurement Units (IMUs) [28, 84, 103, 107]. IMUs are easy to deploy and can be
ergonomically worn in a light-weight ring form factor. In addition, they are sensitive to subtle movements and
do not sufer from occlusion problems.

However, the IMU layout, i.e., the speciic locations where IMUs are placed on the hand and ingers, is crucial for
accurate gesture detection. Designing an IMU layout that is sparse while capable of accurately detecting gestures
is a challenging task and depends on multiple factors. These factors include the desired choice of microgestures,
the hand conditions (free-hands v/s busy-hands or a combination of both), the grasp type (associated with holding
an object), and the user-deined constraints for IMU placement. So far, IMU layouts for sparse instrumentation
had to be chosen manually, in an ad-hoc manner, or using systematic trial-and-error [84, 103]. Considering
the complexity of the multi-factorial design space, this manual process is time-consuming and may lead to far
sub-optimal layouts. This work addresses this challenge by supporting designers of gesture recognition systems
to make well-informed and rapid decisions.

We present SparseIMU, a computational design approach to assist interaction designers and engineers in creating
gesture recognition systems, which efectively recognize a desired set of freehand and/or grasping microgestures

with minimal hand instrumentation. A web-based design tool provides designers with the possibility to specify
high-level requirements (e.g., desired set of gestures and grasps) and designer-speciied constraints (e.g., locations
on the hand and ingers that shall remain un-instrumented, and total number of IMUs to be deployed). It then
automatically selects an optimal sparse IMU layout matching the given preferences as shown in Figure 1-b. In
addition, the tool predicts the expected performance of gesture classiication, including a confusion matrix. This
allows the designer to assess the expected quality of a solution and to rapidly explore design alternatives in a
well-informed manner. To the best of our knowledge, our computational approach and design tool are the irst to
enable the rapid iterative design of sparse IMU-based sensing solutions for microgestures.

The presented data-driven approach is based on our collection of an extensive microgestures dataset, captured
with a customized hardware setup containing 17 synchronized IMUs placed all over the dominant hand. It
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comprises of 18 gestures and three non-gesture states performed with an empty hand as well as on 12 objects
that cover all the six grasp types from Schlesinger’s taxonomy [79], collected from 12 participants. Our dataset
comprises fully annotated dense IMU data. This allowed us in computing models with all possible IMU layouts in
Freehand, Grasping, and Both Combined conditions [in total 3 × (217 − 1) = 393,213 models].
To investigate the potential of making conscious design choices when selecting a speciic sparse IMU layout,

we performed a series of empirical analyses looking into efects on recognition performance. Chiely we have
made the following observations: i) Sparse layouts with a very low number of IMUs achieve high recognition
rates of 90% F1 score and above, ii) the choice of inger segment for IMU placement can be crucial, and iii) IMUs
placed on a non-gesturing inger can be utilized to detect gestures from another inger. These indings reveal
insights that uncover the great potential of sparse IMU layouts in gesture detection.

The collected microgestures dataset additionally serves as the building block for deriving a fast method to select
sparse layouts. We employ a variant of a well-known metric from Machine Learning (ML), Feature Importance, to
rapidly select optimized sparse layouts. We validate our SparseIMU approach with the classiication results from
the entire combinatorial space; the results demonstrate our method’s eicacy. While generating results based on
the entire combinatorial space is prohibitively time-consuming for a practical design task, our method generates
results within minutes on a commodity laptop. Consequently, our approach can be used to enable rapid design
iterations.

We demonstrate the beneits of the SparseIMU approach using four exemplary application cases. Finally, our
user evaluation shows congruence in the tool’s predictions and live gesture recognition. These show how the
tool enables designers and engineers to rapidly determine optimal sparse IMU layouts, identify trade-ofs, and
ine-tune designs. Together, our rich microgestures dataset and computational design tool enable a rapid iterative
design process inwhich designers can create, explore andmodify custom sensor layouts in awell-informedmanner.

In summary, the main contributions of this article are:

• Microgestures Dataset: Using 17 IMUs placed on the hand, we captured microgestures and hand ma-
nipulations with freehand and while holding 12 objects, performed by 12 participants. Overall, it con-
sists of 13,860 trials, resulting in a total of 3,404,276 frames. We release our fully annotated dataset at:
https://hci.cs.uni-saarland.de/projects/ sparseimu.
We hope it will be beneicial for the research community to gain insights into the subtle inger movements
that happen during holding and manipulating objects, opening up a number of opportunities for future
research in diverse areas such as gesture design or analysis of inger dexterity during object manipulation.

• Computational Design Approach for Detecting Microgestures: We present a method and graphical
tool to rapidly select sparse IMU layouts that achieve a good trade-of between minimal instrumentation
and high recognition accuracy, taking into account various user-deined preferences. We also release our
computational tool code with the dataset at the aforementioned link.

• Series of Empirical Analysis: We quantiied gesture recognition performance in diferent settings to
thoroughly understand the efect of segment choice, the potential of detecting gestures from the IMUs on a
non-gesturing inger, and generalizability across diferent users.

• Application Scenarios: Four application scenarios from diverse and representative domains illustrate
how designers and engineers can leverage the potential of our approach for concrete design tasks.

2 RELATED WORK

Our work primarily lies at the intersection of microgestures, gesture sensing and gesture design tools.
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2.1 Freehand and Grasping Microgestures

Microgestures (or Micro-interactions) refer to the subtle inger movements that are fast, easy to perform, and
may not interrupt the other ongoing tasks [5]. They enable myriad applications in diferent scenarios [31, 34, 35].
Such microgestures are further interesting because they can be performed while holding an object (e.g., a steering
wheel [2]) in hand. In such conditions, the physical constraints of each inger vary based on grasp and object
type.
Prior works have taken several paths for designing gestures that are possible with the same hand while

holding an object: from interviewing experts [102] to using prototypes for understanding holding behavior [90].
Additionally, there is a rich body of prior work on the design of hand gestures (see [94] for a survey). These works
adopted diferent design methods to develop gesture sets and focused on either empty hands or holding an object.
A common technique to design gestures in HCI using Guessability-style elicitation studies was proposed by
Wobbrock et al. [99]. We build on prior conceptual work that used this technique for deriving single-hand gestures
in an empty hand [12], as well as for busy hands holding objects of diferent grasp types [83]. By consolidating
a uni-manual gesture set from these two works, our goal is to enable a generic and scalable solution. In this
article, we advance these conceptual foundations through a sensing approach, which makes their application in
real-world deployments possible.

2.2 Sensing Technologies to Detect Microgestures

Various sensing techniques have been proposed to detect inger gestures. While each has its advantages and
disadvantages, it is worth noting that the selected sensing type has a crucial role in the hardware’s placement
location and the enabled gesture set. A large body of pioneering work relies on optical sensing for detecting
microgestures. CyclopsRing [13] proposed a inger-worn isheye camera device to detect on-inger and in-air
pinch and slide gestures, as well as palm-writing, FingerInput [85] demonstrated detection of thumb-to-inger
gestures using a head-mounted or shoulder-mounted depth sensor. Sugiura et al. [87] have shown recognition
of discrete inger-based gestures using an array of photo relective sensors placed on the back of hand. A
variety of other sensing approaches include ultrasonic [41, 63, 64], infrared [27, 44, 63, 108], pressure [16, 21, 98],
magnetic [3, 37, 69], and capacitive techniques [7, 91]. Due to the advances in deep learning, researchers have
also demonstrated the detection of ine inger movements using radar sensing [96]. These systems show some
remarkable success in enabling gesture recognition in freehand conditions. However, due to the inherent property
of such sensing technologies, these approaches can fail under occlusion caused by holding an object.

Although occlusion can be compensated by augmenting an object, the scalability issue can be a bottleneck to
practical deployment. Another approach is based on data gloves that are instrumented with sensors [26, 33, 88].
Despite being able to capture high-idelity information, they are often bulky and hence impede the dexterity
of ingers. For a more detailed overview of the diferent vision-based and glove-based approaches, we refer to
[14]. The most closely related approach to our goal of supporting gesture detection in both conditions, freehand
and while grasping an object, is proposed using an electromyography band by Saponas et al. [77]. However, the
selected grasp variations and the number of gestures are limited due to the lower resolution of the technique.
Laput et al. used a smartwatch accelerometer to detect coarse freehand gestures and also demonstrated activity
detection [52, 53]. Furthermore, placing an IMU on inger segments has been shown to be efective in capturing
subtle inger movements and does not get afected if there is an object in hand [67, 92, 103]. Recently, DualRing
[55] presented the usage of two IMUs placed on the thumb and index inger’s proximal segment to detect four
grippings postures but did not consider any gestures while holding objects. Bardot et al. [6] suggested the
usefulness of a smart-ring (embedded with an IMU and a touchpad) for gestures in hands-busy situations. We take
inspiration from these systems and selected IMUs as our sensing technique to simultaneously support gestures
with freehand and while holding an object conditions.
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2.3 Sparse Sensor Layouts

While the aforementioned works presented a viable technological solution to capture inger information while
holding objects, these do not investigate the optimal sensor placement to fully harness the capability of IMU
sensing. Yet, the placement of sensors is as crucial for gesture detection as selecting the appropriate sensing type.
This is prominently shown by the indings from Gu et al. [28] and Shi et al. [84] who used a single IMU and
determined that touch-contact recognition performance can be strongly increased by investigating the optimal
position on diferent inger segments. Lin et al. [56] used an array of strain gauge sensors to detect inger gestures
based on American Sign Language and reported the minimum accuracy of 70.8% can be increased to 95.8% for
an identiied optimal location. Kubo et al. [51] applied pizo-electric elements to detect thumb, thumb-to-inger,
gestures, and palm touches and reported the change in accuracy from 90.6 to 96.6% for an optimal location.
All these works employed the trial-and-error approach of moving the sensor at diferent locations, requiring
considerable time and efort. We leverage our dense setup of 17 IMUs to avoid the process of repeating manual
trials involving the movement of the single sensor at diferent locations. Using the principle of compressed
sensing and other sophisticated techniques, a large body of work has demonstrated that human body pose can be
reconstructed by a signiicantly reduced number of sensors [1, 20, 39, 68, 81]. However, as mentioned by Brunton
et al. [10], reconstruction and classiication are two diferent problems. While some work exists that uses sparse
representation for gesture classiication, it mainly uses visual data [62, 75]. To the best of our knowledge, our
work is the irst that presents a computational method for identifying a sparse layout for gesture classiication
using IMUs.

2.4 Gesture Design Tools

Gesture design and recognition have received a lot of attention in HCI. Wobbrock et al. [100] proposed $1 for
rapid prototyping of gesture-based interfaces. Long’s Quill [58], a pen gesture system, enables users to create pen
gestures by example. Similarly, several design tools have been presented in the HCI literature for the design of
various gestures. These include work from Ashbrook et al. [4] and Kohlsdorf et al. [49] that allows the designer to
compare a gesture with a corpus of everyday activity data for false positive testing. EventHurdle [47], M.Gesture
[46] and Mogeste [70] enable users to compose custom gestures on mobile devices. Gesture Coder [60] is a
tool to help developers add multi-touch gestures by demonstrating them on a tablet’s touchscreen. While there
are existing machine learning-based frameworks and platforms for quickly prototyping and debugging various
classiiers and implementing custom machine learning pipelines [36, 71, 72], they are targeted for programmers
and do not consider aspects of interaction design. On the other hand, recent advances in technology have enabled
novice users to train and classify custom ML models without the need for programming expertise [61]. However,
these majorly address image or audio classiication problems. Our main goal behind this work is to use machine
learning as a design material [18] and enable designers to prototype custom microgestures without the need
for having expertise in ML and programming. Motivated by the challenges of designing a sparse sensor layout,
we strive to provide designers with a computational tool that abstracts from the complexity of multiple factors
(choice of gesture, object, and location constraint), which are conventionally tuned by manual eforts and require
technical skills.

3 MICROGESTURES DATASET

Researchers in the computer vision community have contributed various datasets comprising hand-object
manipulations [8, 25, 89]. Yet, these do not include explicit inger gestures. Our dataset is the irst attempt to
collect hands-free and busy interaction along with inger microgestures. We use a dense network of 17 IMUs
to capture high-dimensional sensor data with nearly full degrees of freedom (DOFs) of the hand/inger space.
This is diferent from prior work wherein a single sensor has been shifted to diferent locations in diferent
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trials for inding the optimal placement [84]. Our high-dimensional data enables employing novel algorithmic
approaches to uncover hidden phenomena; some of them are mentioned in the following sections. Overall, our
dataset focuses on inger gestures ś performed by diferent ingers ś on objects with diverse grasp types, as well
as with free hands. It also comprises hand-object manipulations with diferent intents, such as holding an object,
using it as suggested by its primary purpose (e.g., writing with a pen), and handling it in an unscripted manner
(e.g., iddling). Although the dataset is intended to analyze microgestures, it can serve other purposes in future
research, including enriching our understanding of inger movements during hand-object interaction, creating
synthetic data, or pre-training neural networks.

3.1 Dense IMU Setup

Instead of utilizing commercially available gloves or marker-based solutions [23, 33], we performed the data
collection with a customized hand sensor system that preserves the cutaneous properties of the hands, the sense
of touch, and does not sufer from occlusion. The sensor system is shown in Figure 2. It ofers an unobtrusive setup
of 17 synchronized IMUs [76, 93] that provide detailed information about the full articulation of a human hand.
It includes 9DOF inertial sensors with 3-axis accelerometer, 3-axis gyroscope, 3-axis magnetometer (MPU9259,
InvenSense Inc., CA, USA) with a footprint of 3 × 3 mm, deployed on all three segments of all ive ingers using a
medical-grade skin-friendly adhesive tape (Helvi Mogritz). The inger IMUs are mounted on lexible sensor strips
and connected to a base unit attached at the hand’s back, which includes an additional IMU. A customized ixture
with a thin velcro belt is used to fasten the base unit on the hand, and the data is sent to the computer through a
USB connection. We also attached a wireless IMU (RehaGait, Hasomed GmbH, Germany) on the distal forearm,
to include data comparison from existing consumer devices like smartwatches or itness trackers, resulting in a
total of 17 IMUs. All IMUs are precisely time-synchronized, and the data is captured at a framerate of 100Hz.
We refer to Salchow-Hömmen et al. [76] for full details on formal hardware validation, which found that sensor
readings are accurate enough to infer ingertip positions with errors < 2 cm. For the use of the raw IMU data, the
hardware does not require any calibration, making it particularly practical and feasible for studies. However, we
integrated an initial pose with the hand lat on the table and the straight thumb abducted at a known angle for a
few seconds at the beginning of each subject’s recording, in order to boost the dataset’s versatility in light of
potential future uses where a baseline or calibration pose might be desired. We also note that the framerate of
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Fig. 2. Hardware setup with 17 synchronized IMUs placed all over the dominant hand. It preserves cutaneous properties and
allows unobtrusive interaction with complex object geometries. The let image labels describe the spatial notation of each
IMU used in our analysis.
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our dense setup of 17 IMUs is in line with that of Xu et al.’s [104] recent work, which suggests that 100 Hz is
suicient for hand gestures’ classiication. Furthermore, prior studies have found that even the quick movements
of the ingers are slower than 10 Hz [40, 42].

3.2 Objects Representing Grasp Variations

We collected data in Freehand and while Grasping an object conditions. For the latter, we selected a set of objects
that are representative of real-world tasks. Speciically, we chose objects labeled in the VLOG Dataset [24] which
is based on internet video logs of everyday activities. To ensure we have representatives for each type of grasp,
we categorized the objects based on Schlesinger’s Grasp Taxonomy [79]; this has been widely employed by prior
works [19, 22, 77, 83]. For each grasp type, we focused on non-deformable objects with two size variations Small
(S) and Large (L). The VLOG Dataset does not contain objects that correspond to Small Tip and Spherical grasps,
which is presumably a result of not all grasp types being equally well-represented in everyday life [11]. Therefore,
we added two additional objects, a Needle and Pestle, to obtain an exhaustive list of objects covering all grasp
types [83]. The complete set of 12 objects and their corresponding grasp type is shown in Figure 3.

3.3 Gesture Set and Non-Gesture States

For Freehand and Grasping conditions, we collected inger movements while performing microgestures and
non-gesturing states. For the microgestures, we focused on conscious subtle inger movements that do not require
altering the grasp. We selected six primitive inger movements based on bio-mechanical characteristics [43, 95],
shown in Figure 4: Tap, Flexion, Extension, Abduction, Adduction, and Circumduction. For consistency of gestures
across diferent ingers, we use the Ring inger as the reference to deine Abduction (away from the Ring inger)
and vice-versa for Adduction gestures. Furthermore, the swipe gesture was recorded with the participant’s

Freehand

Cylindrical Palmar Hook Lateral Tip Spherical

Knife
(cutting)

Book
(reading)

Cup
(holding)

Spoon
(pouring)

Needle
(sewing)

Pestle
(crushing)

Bottle
(drinking)

Box
(carrying)

Bag
(carrying)

Paper
(reading)

Pen
(writing)

Bowl
(placing)

Large

Small

Fig. 3. Using a dense network of 17 IMUs placed on the hand, the microgestures dataset was collected for Freehand and
while Grasping 12 objects covering each of the six grasp types with two variations.
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inger motion from one extreme until it reached the opposite extreme. Following Ashbrook’s deinition of micro-
interactions [5], we further limited our set to gestures with a short duration (4 seconds or less). Moreover, we
centered our data collection on single-inger gestures because they promise to increase robustness [82]. In terms
of gestural input, these movements translate to both - continuous and discrete gestures through directional
sliding and tapping.

Freehand                                                               Grasping

Tap                     Flexion                Extension                                   Tap                          Flexion                   Extension

Abduction             Adduction        Circumduction                       Abduction                 Adduction             Circumduction

Fig. 4. The Dataset includes six gestures performed with three fingers - Tap, Flexion, Extension, Abduction, Adduction and
Circumduction - resulting in a total of 18 gestures. Additionally, data was recorded for three non-gesture classes: Static hold
(just holding the object), performing Primary action while holding the object, and an Unscripted action where the user was
free to perform any custom movements.

The collected non-gesture states include a variety of inger movements that users perform consciously or
unconsciously during conventional hand/object interaction. For instance, free hand movements while talking,
adjusting the grip, turning the object for visual inspection, manipulating the object, or iddling. For capturing
non-gesture conditions, we recorded Static hold, Primary action (e.g., writing with a pen, drinking with a glass),
and Unscripted actions (e.g., adjusting grip, iddling). The participants were given no explicit instructions while
the data for Unscripted action was recorded.

Since moving a inger while holding an object risks dropping the object, we empirically veriied which ingers
can be moved while holding objects. To consolidate our choice of inger movements, we conducted a pilot study.
Two interaction design experts independently recorded their response on a 7-point Likert scale (1: impossible to
perform and leads to dropping the object; 7: very intuitive and easy to perform). This resulted in a total of 360
gestures: 6 (gestures) × 5 (ingers) × 12 (objects) inspected by each expert. Of 720 Likert scale readings, 42 gestures
received a rating of 1 by both the experts and these were marked as impossible. Consequently, we focus on the
Thumb, Index, and Middle ingers as our main gesture ingers; a choice which is in-line with prior works [12, 82].

3.4 Participants

We recruited 12 participants (6M, 6F, mean age: 26.1; SD: 3.4) with diferent professional backgrounds, including
computer graphics researcher, ireighter, and kindergarten teacher. Ten were right-handed, and two reported
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themselves as ambi-dexterous. We measured their hand size from the Wrist to each inger’s tip and found an
average length to Thumb’s tip: 137mm (SD:8mm), Index: 181mm (SD:12mm), Middle: 192mm (SD:12mm), Ring:
181mm (SD:10mm), and Pinky: 157mm (SD:9mm). For context, the average hand length (middle inger’s tip to the
wrist crease) is 193 mm and 180 mm for males and females, respectively [74]. Participation to our data collection
was voluntary while adhering to the institution’s COVID-19 rules and regulations, and each participant received
a compensation of 30 Euros.

3.5 Task and Procedure

Before starting the data collection, we demonstrated the gestures on an abstract cylindrical object that was
not used any further. Once the participants got familiarized with the gestures, we attached the hardware to
their dominant hand, and they performed the initial pose by placing the hand on the table. For the Grasping
condition, we asked the participants to perform gestures on the object (while maintaining the grasp), and use the
palm as the surface for the Freehand condition. Of note, the same hand was used for holding the object and for
gesturing. Furthermore, the directional orientation was kept constant across each participant. They performed
all the gestures while sitting on a chair, except for Box and Bag, wherein we systematically added variation in
posture and orientation for each participant by asking them to perform the gestures while standing and facing
perpendicularly. We counterbalanced the two conditions (Freehand and Grasping) and further counterbalanced
the order of objects (grasp variations). Once the Freehand or the Grasp variation was selected, we presented the
gestures with the speciic inger name and non-gesture states in a randomized order. We recorded ive trials for
each gesture. To collect data from non-gesture states without interruption, we recorded one long sequence of
around 30 seconds and split it into ive trials. The dataset collection took approximately 3 hours per participant
with breaks in-between to avoid fatigue. The sessions were also video recorded. Using a custom MATLAB
application, the experimenter manually annotated the trials during data collection with the participants orally
communicating the start and stop of the gesture. The labels include information about the freehand or speciic
grasp variation, gestures along with the instructed inger, and the three non-gesture states. Overall, our dataset
contains a total of 13,860 trials (1,155 trials × 12 participants) with 18 diferent gesture and three non-gesture
states performed on 12 Grasp variations and with Freehand.

4 DATASET ANALYSIS TO UNDERSTAND IMU PLACEMENT

The usage of IMUs in HCI has been explored for gestural input; the most common approach is to place a single
IMU on the gesturing inger [28ś30, 84, 107]. However, very little is known about the relationship between the
precise position of IMU(s) and its efect on classiication performance. To understand the multitude of factors
afecting the overall classiication performance, we sought to systematically investigate diferent perspectives,
including the quantity of IMUs, variation between diferent inger segments, alternative IMU placement location
to simultaneously achieve higher recognition and usability, lastly, evaluate the feasibility of a user-independent
recognition model. An in-depth understanding would not only enable taking full advantage of the IMU sensing
capabilities and ine-tuning IMU placement to achieve the maximum performance for a given set of gestures, but
also uncover hidden patterns to identify optimal designs of gesture sensing devices.
This section irst describes our classiication pipeline and a series of empirical analyses, which ofers new

insights into the design of sparse IMU layouts for hand microgesture recognition.

4.1 Feature Extraction and Classifier Selection

Aiming to understand the underlying factors afecting performance rate due to IMUs’ location, we started of by
creating a classiication pipeline. Given the size of our search space has the large number of 393K layouts, we
created a gesture detection pipeline with two essential requirements: scalable and rapid train-test time.
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Feature Extraction. From a given trial and for each of the 9 axes of an IMU, we extract six statistical features:
maximum, mean, median, minimum, standard deviation, and variance. In total, the number of features from
all 17 IMUs × 9 axes × 6 features amounts to 918. To compile this list of features, we drew inspiration from
the automatic feature extraction library, TsFresh [15], which has shown promising results in prior work on
gesture and activity recognition [27, 45, 57]. Due to multiple sensors and reduced computational load, we used
the minimum coniguration of the library’s functionalities. To further minimize the efect of diferent trial lengths,
we removed the sum and length features. Due to the lower sampling rate of our 17-IMUs setup as compared to
single-sensor approaches [53], we did not extract features from the frequency domain. However, we note that our
released dataset will allow the research community to feed more features of TsFresh into the neural network [45],
take advantage of a single feature, such as derivatives as input into the neural network [84], or further perform
feature engineering for input in non-neural-network or neural-network classiiers to improvise the recognition
rate based on the optimal location. In Section 4.1, we show the correlation of our selected features and a diferent
set of features from related work to show the correlation in the ranking of layouts.

Method. We selected 10 random participants as training set and the remaining two as test set (80:20 split) and
created grasp-independent models, i.e., the class labels do not include any grasp information. We also performed
a leave-one-person-out analysis in Section 4.5. For our multi-class classiication, we used 19 classes: (3 ingers × 6
gestures) + 1 Static hold. Diferent IMU layouts may contain diferent amounts of IMUs (from 1ś17); therefore, to
compare diferent state-of-the-art classiiers and estimate the classiication time required for the full combinatorial
classiication, we evaluated randomly selected 100 layouts for a given IMU count of 1ś17, totaling 1,435 layouts.
Note, for count = 1, 16, and 17, the total possible layouts are slower than 100.

Classiier Selection. We fed our extracted features into multiple commonly used classiiers to evaluate their
recognition rate and training time. Speciically, we used scikit-learn’s implementation of Support Vector Classii-
cation (SVC), Logistic Regression (LR), k-nearest neighbors (KNN), Random Forest (RF) with max_depth = 30;
and PyTorch implementation for Neural Network (NN) with 4 fully connected layers of decreasing hidden layer
size (n = 1024, 512, 256, ReLU activation) and a inal softmax activated classiication layer. Only NN models were
trained on a GPU machine and others on a 40-core CPU. We used the default parameters for all the classiiers to
perform trial-by-trial basis classiication. As a performance metric, we used the macro average of the F1 score
because it considers both precision and recall.
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Fig. 5. Comparison between average F1 score obtained by diferent classifiers and their training time for 1,435 IMU layouts.
The error bars depict one standard deviation.
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Results. As shown in Figure 5, the F1 score and training time largely depend on the choice of classiiers. Since
we wanted to use the same classiier for multiple settings in the following analyses, as well as the later-described
computational design tool (see Section 6) ś we opted for Random Forest. This classiier achieves an average
F1 score close to the highest one obtained by Neural Network while having a lower training time than Neural
Network. Furthermore, RF models can be easily computed on a consumer-grade CPU machine. In-line with
indings from prior work [101], our results show that Random Forest Classiier has superior performance than
KNN.

As shown above, our released dataset allows generating results with various classiication models techniques.
Through our analysis, we found that, while diferent models may yield diferent accuracy levels, the order
of performance of individual layouts is very similar. Speciically, to understand our results’ dependence on a
particular classiier, we used F1 scores of all layouts with sensor count = 1 from the top-performing classiiers,
namely KNN, Ridge, RF, and NN. Following that, we sorted the results alphabetically by IMU labels. Then,
using a pairwise Spearman correlation (as used by Guzdial et al. [32] for comparing ranked lists), we obtained a
correlation of 0.919, 0.975, and 0.919 with p<0.001 for RF vs. KNN, NN, and Ridge, respectively.

In addition, we conducted a similar analysis to understand the change in the ranking of IMUs for diferent sets
of features. We selected ive features (maximum, minimum, mean, skewness, and kurtosis) used in the existing
literature on IMU sensing [28] and trained 17 models with RF. Subsequently, similar to the analysis comparing
diferent classiiers, we calculated the Spearman correlation on the F1 score of alphabetically-sorted IMU’s list
from both feature sets. Our results show a high correlation of 0.995 with p<0.001 between the layout ranking
produced by 2 diferent set of features, indicating that while selecting other features may result in a diferent F1
score, the order of IMUs remains very similar.

4.2 Identifying Sparse Layouts for a Given IMU Count

The large count of IMUs ofers the possibility of creating vast layout combinations. However, not every count and
layout may produce a similar recognition performance. Therefore, an important aspect that we examined was
identifying the best performing sparse layout for a given number of IMUs. This analysis provides three major
insights: Firstly, it allows us to understand how the recognition performance varies with the number of IMUs.
Secondly, it gives insights into the interval in which F1 scores fall for any given number of IMUs. Lastly, the
results inform the optimal IMU placement location with a ixed budget of sensors [10]. Of note, we use the term
IMU Count to refer to any given amount of IMUs from 1ś17.

Method. To explore the full combinatorial space, we trained models with all possible layouts from 1 to 17 IMUs
on our initial train-test split as described in Section 4.1. Moreover, to systematically understand the variation in
performance for both types of microgestures, we performed this analysis for three conditions: Freehand, Grasping,
and Both Combined. This totals to 3 × (217 − 1) = 393,213 models. For each model, we performed multi-class
classiication with 19 classes: (3 ingers × 6 gestures) + 1 Static hold. Note, Grasping and Both Combined conditions
utilized grasp-independent models; therefore, we did not encode grasp information in the class labels. In Section
4.6, we compare our results with grasp-dependent models.
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Fig. 6. Full Combinatorial Results: Each circle represents the F1 score for each of the 393K models classifying 19 classes in
Freehand, Grasping, and Both Combined (Freehand+Grasping) conditions. The blue shows the maximum F1 score, and the
green depicts the top 5% layouts in a particular IMU count.

Results. Figure 6 plots the F1 score on the test set from each 393K models trained in all three conditions
(Freehand, Grasping, Both Combined), organized by the count of IMUs present in the model. We now discuss
each condition in turn:

(1) Freehand microgestures: The results provide a complete overview of the large performance diference that
depend on the IMU count and, for a given IMU count, on the speciic location of IMUs comprised in a
model. As shown in Figure 6-a, the highest F1 score for count = 1 is 0.62 (M-midd). Adding a second IMU
increases the F1 score to 0.84 (T-midd, M-dist); the F1 score further increases to 0.90 (T-midd, I-prox, M-midd) and 0.93

(T-midd, I-prox, M-dist, R-prox) with 3 and 4 IMUs, respectively. On the contrary, the lowest F1 score for count = 1
was 0.2 (Forearm), and for count = 2 was 0.19 (R-prox, Forearm). Amongst all models, the maximum F1 score of 0.97

(T-prox, I-dist, I-prox, M-dist, M-midd, R-midd, P-midd, Forearm) is achieved with count = 8. It should also be noted that a
F1 score of 0.90 can be achieved with as little as 3 IMUs, and henceforth only a maximum increase of 4%
occurs with the addition of more IMUs. The F1 score drops to 0.89 when all 17 IMUs are included. To further
investigate this drop, we trained 100 classiiers with random states from 0-99 for count = 17. We only change
the seed values for this investigation, while training classiiers for other analyses have a constant seed value
with default parameters to allow reproducible results. Out of 100 models, 4 models achieved the maximum
F1 score of 0.96, which is close to the maximum F1 score of 0.97 achieved by some other higher counts.
Overall, 93 out of 100 models achieved an F1 score of greater or equal to 0.90, and only 7 models have an
F1 score in the range of 0.88 (lowest) and 0.89. This explains the reason for the dropwe observed at count = 17.
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(2) Grasping microgestures: Here, our classiication setting is more challenging than Freehand microges-
tures due to the inclusion of all 12 Grasp variations. This results in a slight drop in overall performance
(see Figure 6-b). For count = 1, the highest F1 score was 0.54 (I-midd). Adding an additional IMU (count
= 2) gradually increased the performance to 0.72 (I-prox, M-midd), for count = 3 to 0.88 (T-dist, I-prox, M-prox),
and for count = 4 to 0.90 (T-dist, I-midd, I-prox, M-prox). Similar to Freehand, the IMU located on the forearm
achieved the lowest F1 score of 0.17 for count = 1. Across all models, the maximum F1 Score of 0.93

(T-dist, I-dist, I-prox, M-dist, M-prox, Handback) is irst achieved at count = 6. Note, the general pattern of variation in
the maximum and minimum F1 score is similar to the Freehand condition, and an F1 score of 90% can be
observed with a small number of IMUs (count = 4). Afterwards, the maximum increment in F1 score is only
3%.

(3) Both Combined microgestures: As shown in Figure 6-c, we observed a similar overall trend when gestures
in Freehand and all Grasp variations were classiied together. The maximum performance achieved with
one IMU was 0.53 (I-midd). Adding more IMUs resulted in an increase of F1 score to 0.74 (I-prox, M-midd), 0.88

(T-dist, I-prox, M-prox) and 0.89 (T-dist, I-prox, M-midd, M-prox) for IMU count = 2, 3 and 4 respectively. Conversely,
the minimum F1 score for counts = 1, 2, 3 and 4 is 0.18 (Forearm), 0.23 (P-dist, P-midd), 0.26 (P-dist, P-prox, Forearm),
0.28 (P-dist, P-midd, P-prox, Forearm) respectively. The min and max diference of the F1 score within each IMU
count shows a similar pattern as the other two conditions. Across all counts, the maximum F1 score of 0.92

(T-dist, T-midd, I-dist, I-prox, M-dist, M-midd, M-prox, R-dist) is irst achieved with count = 8. At count = 5, an F1 score of
91% is obtained, and only a 1% increase is seen with more IMUs.

4.2.1 Relevance of each IMU. Multiple layouts may achieve a performance close to the top-most layout in each
count as shown in Figure 6. To better understand what locations on the hand and inger are more likely to
contribute to top-scoring layouts, we analyzed the top 5% best-scoring layouts (marked in green color in Figure
6). Speciically, we introduce an Occurrence Score metric that quantiies the occurrences of each IMU in the top 5%
layouts (see Eq. 1). Here, a higher score of an IMU indicates its frequent presence in the top layouts. For a set � of
possible IMUs, the Occurrence Score of an IMU � is

occ� =
1

|� |

|� |︁

�=1

occurrences of IMU � in top 5% layouts with � sensors

number of top 5% layouts with � sensors
(1)

where we calculate the mean of an individual IMU’s occurrence over all IMU counts. It is important to note
that this is not the overall occurrence in the total space of 393K models but rather how frequently it occurs in the
top layouts.
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Fig. 7. Occurrence Score of each IMU in the top 5% layouts from count 1 to 17. Across all IMUs, we observed a minimum
score was 0.33 and maximum of 0.84.

Results: We examined the Occurrence Score of each IMU as shown in Figure 7 and derived patterns that guide
our further analysis. Since the gestures were performed by Thumb, Index, and Middle ingers, the IMUs from
these three ingers appear more often in the top 5% layouts in all three conditions (Freehand, Grasping, and
Both Combined). Interestingly, the Occurrence Score varies greatly across diferent segments of the same inger.
The comparison between Freehand and Grasping conditions revealed three considerable diferences: First, we
observe that an IMU placed on the tip of the Thumb (T-dist) has a high Occurrence Score of 0.67 for Grasping
microgestures, whereas it is only 0.33 for Freehand microgestures. We assume this is related to the nature of
gestures performed on the palm in the Freehand condition, wherein the Thumb stretches out at a larger distance
and bends lesser than during Grasping microgestures. In a typical grasp, the Thumb supports the object; hence
the distance to reach the surface for performing a Grasping microgesture is relatively smaller. Second, for all
ingers except the Thumb, Grasping microgestures tend to favor IMU placement on the proximal segment over
the ingertip. In contrast, Freehand microgestures show a clear tendency to favor placement on the ingertip for
Index and Middle ingers. Below, we investigate the efect of IMU position on classiication performance in more
detail.

Implications: For all three conditions, we noticed that a higher IMU count does not necessarily translate to
higher recognition performance. F1 scores close to the optimal can be achieved already with a fairly small number
of IMUs (3 to 6). We observed a large variation in performance depending on where a given number of IMUs is
placed on the hand and ingers, which also depends on the microgesture condition as shown in Figure 7. These
indings highlight the importance of creating a layout by choosing a right number of IMUs, a right combination
of ingers, and inger segments for the desired set of grasp and microgestures to achieve optimal recognition
accuracy.

4.3 Performance of IMU Placement at Segment Level

Having identiied that the choice of inger segments for IMU placement can be crucial for obtaining high
recognition performance, we now aim to investigate the inluence of inger segments on recognition performance
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more systematically. This also informs the design of minimal form-factor devices that place IMUs only at the
optimal segment.

Method. We used our initial 80:20 train-test split of the participants’ data and evaluated using a single IMU
under multiple settings. To reduce any efects caused by diferent grasp variations, we created grasp-dependent
models. Moreover, for a clear understanding of individual ingers and their respective gestures, we performed
inger-wise classiication, i.e., atmost six gestures and one static hold class per inger. Overall, we trained 17
single-IMU layouts × [(1 Freehand × 3 gesturing ingers) + (9 Grasp variations × 3 gesturing ingers) + (3 Grasp
variations × 1 gesturing inger)] = 561 models. For the analysis in this section, we focus on the IMU on gesturing
ingers and on three representative grasp variations that have been identiied in prior work to each represent a
cluster of Grasping microgestures [83]. The detailed results, including IMUs on non-gesturing ingers and all 12
grasp variations will be released with our dataset.

Results. As illustrated by Figures 8 and 9, the F1 score varies greatly across diferent segments for Freehand
as well as Grasping microgestures. In particular, it indicates that for some cases, the F1 score for a gesture may
even rise from 0.0 to 1.0 depending on what segment the IMU is placed on the same inger. In the following, we
highlight this efect for Freehand as well as Grasping microgestures.
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Fig. 8. F1 score of single IMU models trained for multi-class classification. The classes include six diferent gesture types
possible with each finger (+1 static) for each model during Freehand microgestures. Note that diferent models were trained
with IMU on each segment (distal, middle, proximal) and for diferent gesturing fingers.

(1) Freehand: The kinematics for each inger varies, and the motion required for each gesture is also diferent.
As a result, the F1 score can have a large diference across segments (shown in Figure 8). We observed
that the optimal segment is diferent for diferent ingers. In particular, for Thumb gestures, the middle
segment (midd) achieved an average F1 score of 0.93, whereas the other two segments, i.e., distal (dist) and
proximal (prox), have a relatively lower score of 0.72 and 0.60, respectively. The optimal segment for Index
gestures is diferent: here, the prox-segment has an average F1 score of 0.91, while the performance on the
other two segments is considerably lower with 0.78 (I-midd) and 0.76 (I-prox). For the Middle gestures,
all segments achieved a similar F1 score of 0.60-0.65, the segment choice is still prominent for individual
gestures wherein the performance may difer with 20-40% for Adduction, Abduction, and Circumduction.
In contrast, the performance diference across segments is lower for the Tap gesture (10ś13%). Surprisingly,
due to the hand bio-mechanics, the IMU on the Handback can detect Thumb Flexion and Tap with an F1
score of 0.82 and 0.70, respectively. This inding can be beneicial to detect inger gestures in settings where
a user might not want to wear any sensor on the inger (e.g., while working in a kitchen or car workshop).
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We investigate this aspect of recognizing gestures from a non-gesturing inger in more detail in the next
section.
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Fig. 9. F1 score of single IMU models trained for multi-class classification. The classes include 6 diferent gesture types
possible with each finger (+1 static) during three exemplary grasp variations (Grasping microgestures).

(2) Grasping: Our results reveal a strong inluence of segment choice for Grasping microgestures (see Figure
9). Similar to the Freehand condition, we observed a large diference in F1 score across diferent segments
of the same inger. Furthermore, it is noteworthy that there are dissimilarities in the pattern of optimal
segment across diferent grasp variations. This relates to the distinctive inger postures in diferent grasps,
afecting how a inger moves while performing the gesture. In particular, for the Thumb and Index gestures
on Cylindrical-S and Spherical-S, the dist segment appeared as the optimal segment in both grasp variations.
However, for the Middle inger gestures, the optimal segment is diferent across all three grasp variations
(Cylindrical-S has dist, Lateral-S has mid, and Spherical-S has prox). Moreover, the Index and Middle
gestures on Spherical-S have a relatively lower variance across segments, which could be explained by
the bigger real estate that afords comparatively larger movements than the other two grasp variations.
In general, the substantial diference in the recognition performance at the segment level is due to the
intricacies of the grasp variation, inger, and gesture.

Implications. Depending on the grasp, inger and type of movement during the gesture, the single-IMU
performance across segments greatly varies. This formally validates our initial indings from the full combinatorial
classiication results: The choice of inger segment for the IMU sensor placement can have a very strong inluence
on classiication performance. However, since these classiication results difer based on the subset of grasps
and chosen gesture classes, a one-its-all design solution will likely not lead to best results. Hence, we propose
a computational design tool in Section 6, which provides layout recommendations based on the user-deined
parameters.

4.4 Placing IMU on a Non-gesturing Finger

Finger co-activation is a widely known phenomenon in bio-mechanics [78]. Our goal is to leverage inger co-
activation and investigate if micro-movements caused in neighboring ingers are suicient for gesture detection
from a non-gesturing inger. This would be beneicial in situations where placement of an IMU on the gesturing
inger would hinder the primary activityśe.g., having an IMU on the Index inger may hinder situations like
using a knife. In such scenarios, placing the IMU on an alternative location capable of detecting gestures from a
neighboring inger would be more desirable.

Method: To investigate the possibility of detecting gestures with any single inger, we used our initial 80:20
train-test split and trained ive models for each of the three gesturing ingers; each model comprised a total of three
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IMUs placed on every segment of the respective inger. For a detailed analysis, we performed grasp-dependent
and inger-wise classiication. This gives a total of 5 ingers w/ IMUs × 3 gesturing ingers = 15 models for
Freehand. We trained another 150 models [(5 ingers w/ IMUs × 9 grasp variations × 3 gesturing ingers) + (5
ingers ingers w/ IMUs × 3 grasp variations × 1 gesturing inger]. In each multi-class model, we included all six
gestures for an individual inger and the static class - totaling up to seven classes.

Results. Figure 10 and 11 show the F1 score on the test set for Freehand and Grasping when models are trained
with IMUs on diferent ingers. These results indicate the feasibility of detecting gestures from IMUs on the
non-gesturing inger:
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Fig. 10. F1 score of IMUs placed on gesturing as well as non-gesturing fingers for multi-class classification. The classes
include six diferent gesture types possible with each finger (+1 static) for each model during Freehand microgestures. T, I, M,
R, and P refer to the IMUs on Thumb, Index, Middle, Ring, and Pinky finger. The gesturing finger is denoted with a blue circle.

(1) Freehand: We observed the efect of inger co-activation and the feasibility of detecting gestures from IMUs
on a non-gesturing inger for all three gesturing ingers (see Figure 10). Unsurprisingly, placing an IMU
on the gesturing inger results in a higher F1 score in most cases. However, it is important to note that
depending on the inger and gesture, the IMUs on a non-gesturing inger can even yield a higher F1 score
than when placed on the gesturing inger. This is particularly visible with gestures performed by the Middle
inger. This observation is in line with indings from prior work that have reported the middle inger to
induce higher involuntary movement in adjacent ingers [78, 86]. For Middle Circumduction, for instance,
the F1 score on a non-gesturing inger (Thumb) increases by 34% (from 0.67 to 1.00) compared to placing an
IMU on the gesturing inger (Middle). This can be explained by the involuntary Thumb movement caused
while performing the Middle Circumduction on the palm. Also, Index Adduction achieved a 5% higher F1
score through placing IMUs on a non-gesturing inger (Middle) than gesturing inger. Even though Thumb
has the least tendency amongst all the ingers to induce movements in the neighboring ingers, placing
an IMU on the non-gesturing inger (Middle or Ring) produces a similar F1 score as that on the gesturing
inger (Thumb) for Flexion, Extension and Circumduction. These promising results of placing an IMU on
the non-gesturing ingers show the feasibility of detecting gestures beyond the conventional placement
strategies.
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Fig. 11. F1 score performance of six diferent gesture types possible with each finger (+1 static) when the IMUs are placed on
gesturing as well as non-gesuring fingers for three representative Grasp variations (Grasping microgestures).

(2) Grasping: As mentioned in prior work, ingers in contact with the object get support, thereby reducing
the efect of co-activation [82]. Thus, all Thumb and Index gestures on Cylindrical-S (Knife) achieved the
highest performance when the IMUs are placed on the gesturing inger. In spite of that, we observed that
the non-gesturing inger can detect Thumb and Index gestures with a drop of only 15ś20% from the F1
score obtained by an IMU on the gesturing inger. While this reduction is considerable, it may be acceptable
for some gestures in settings that do not allow for augmenting the gesturing inger with IMUs. Based on
the grasp type and gesture, the IMUs on the non-gesturing inger may even achieve a higher performance
than the gesturing ingers, e.g., on Spherical-S (Pestle), Thumb Extension and Circumduction achieved a
higher F1 score of 0.83 and 0.95, respectively, through IMUs on the non-gesturing inger (Index). In contrast,
the IMUs placed on the gesturing inger (Thumb) achieved a comparatively lower score of 0.67 and 0.87.
On Cylindrical and Spherical grasps, all ingers are in close contact with object but not all grasp types have
the same contact ingers. For example, while holding Lateral-S (Spoon), the Ring and Pinky ingers are
suspended in the air, which causes an involuntary movement in the other adjacent non-gesturing inger.
As a result, the gesturing (Middle) and non-gesturing (Pinky) inger IMUs achieve a similar F1 score for
Middle Abduction and can also detect Middle Flexion with an F1 score of 0.80 (0.15 lower from the IMUs
on the gesturing inger). Additionally, we observed the possibility of detecting gestures with non-gesturing
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ingers that are in contact with the object. With these many diferent factors afecting the performance, it
is challenging for a designer to place the sensor at an alternative location intuitively.

Implications When the hands are busy, instrumenting gesturing ingers might not be possible in all cases. For
example, while writing, instrumenting ingers involved in gripping the pen might hinder the primary activity. In
such scenarios, placing an IMU on neighboring ingers can be eicient. Our indings show that placing IMUs on a
non-gesturing inger may enable gesture detection at a comparable or even higher performance rate.

4.5 Generalizability of Layouts across Participants

Next, we aim to understand the extent of inter-personal diferences in recognition performance. This is a crucial
question because there can be inter-personal variations in the way the microgestures are performed. If there is a
large diference in classiication results across participants, the design tool that we describe in later Section 6
would need to account for it while suggesting a sparse layout.

Method. A comprehensive Leave-one-person-out (LOPO) evaluation with 12 participants × 393,213 layouts =
4,718,556 models will approximately take 25 days of computation time on our 40-core machine. To circumvent
this problem, we irst identiied the best layout according to the F1 score for a given count of IMUs on our 80:20
participants split from the combinatorial results obtained with the combined condition (Freehand+Grasping).
Subsequently, we used these best layouts and trained 204 models (12 participants × 17 best layouts for the IMU
Counts) for a LOPO evaluation.
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F1 Score on our 
randomly selected 

80:20 train-test split

Fig. 12. Comparison of the F1 score achieved on our randomly selected two participants with leave-one-person-out. The blue
horizontal line corresponds to the average F1 score across 17 IMUs for the previous 80:20 split, and the grey band shows
the standard deviation in the F1 score across all IMU counts. The vertical columns represent the average F1 score for each
participant, and the error bar represents the standard deviation for each participant from count 1 to 17 IMUs.

Results. Figure 12 depicts the results of the LOPO evaluation. We observe that the diference in F1 score from
our randomly selected 80:20 train-test split and any LOPO model is about ±6%. It is worth noting that most
participants achieved higher performance than our randomly chosen participants.

Implications. Despite the inter-personal variations in how the gestures are performed, our recognition pipeline
still scales well and achieves high recognition performance with user-independent models. We observed only
little variation in F1 scores across participants, which demonstrates that model predictions generalize to data
from new users.
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4.6 Grasp-Dependent v/s Grasp-Independent Models

In our combinatorial analysis, we trained grasp-independent classiiers by combining all grasp variations. Here,
we aim to investigate if these initial results can be further improved if a subset of grasps is selected. This would
be relevant for application cases that comprise selected activities with a known set of grasps, or for systems that
can identify the current grasp, e.g., by using activity recognition.

Method. We classiied all 12 grasp variations separately (grasp-dependent models) by using our initial 80:20
split of participants’ data with 19 classes [(3 ingers × 6 gestures) + 1 static hold]. To save on the computation
time, we performed the full combinatorial evaluation of grasp-dependent models until IMU count = 5. There

were 12 grasp variations ×

5︁

�=1

17�� layouts = 112, 812 models.
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Fig. 13. Comparison of F1 score achieved by the best layouts until an IMU count = 5 for grasp-dependent and grasp-
independent models.

Results. For 9 out of 12 grasp variations, the F1 score increased when the model is trained on a speciic
activity (see Fig. 13). Grasps like Lateral-S (Spoon), Tip-S (Needle), Lateral-L (Paper) showed an improvement in
recognition of 20ś30% compared to the grasp-independent model. In contrast, grasps like Cylindrical-S (Knife)
and Tip-L (Pen) did not show any increment, which can be due to the object’s geometry. Speciically, on such
grasp variations, the ingers are tightly packed, hindering the inger movement while performing gestures.

Implications. The performance tends to improve if the model is trained for a speciic grasp variation. Therefore,
when a subset of grasp-variations are chosen that map to a speciic context, our results from the combinatorial
analysis can further improve. This feature of selecting grasps is also integrated in our later presented design tool
for inding a sparse layout.
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4.7 Summary of Findings

The key takeaways from the above in-depth analyses are:

• More is not always better : Saturation in classiication performance is achieved after a ixed count of IMUs as
shown in Figure 6. In typical cases, a quite low number of 3ś4 IMUs suices for an F1 score of about 90%.

• Possible to achieve gesture recognition via IMU on non-gesturing inger : Our indings from placing IMUs on a
non-gesturing inger in Section 4.4 opens up a new avenue for microgesture detection in HCI by leveraging
movement patterns caused by complex hand bio-mechanics in non-instrumented ingers.

• Efect of grasp type: In our analysis of Grasping microgestures, we found the F1 score pattern dissimilar
across diferent grasp variations ś due to the inluence of grasps on the inger pose and motions. This
ultimately afects the spatial coniguration of an optimal layout.

• User-independent models: We found that a performance of 90% and above with user-independent classi-
ication models. This demonstrates the viability of utilizing IMU-based input in future consumer-grade
systems.

Given this multi-factorial design space that inluences the classiication performance, providing an automated
system to a designer will enable rapid design iterations and decision making for optimal IMU placement. Inspired
by these indings, we present a rapid technique to identify sparse layouts and a GUI-based computational design
tool in the following sections.

5 SPARSEIMU: METHOD FOR RAPID SELECTION OF SPARSE IMU LAYOUTS

Training the models for all layouts of IMUs took about 50 hours (Freehand = 1:27:31, Grasping = 22:41:52 and
Freehand + Grasping = 26:20:10). Modifying the set of gestures or objects requires re-training of the models, as a
new setting can inluence the importance of speciic IMUs. Additionally, if one wants to explore design variations,
like comparing diferent gesture sets or sets of objects, this results in a multiplicative increase of the number of
models that need to be trained and evaluated. This large computation time makes an exploratory study of IMU
layouts very slow if not impossible.
To overcome this issue, we propose a method referred to as SparseIMU. It uses a proxy metric describing the

importance of individual IMUs. As a requirement, this method should be fast to compute and correlate well with
the results obtained from training all model layouts. Speciically, the proxy metric is used to derive what IMUs
contribute most to the classiication. In this work, we study two such proxy metrics:

• Feature Importance, also called Mean Decrease in Impurity [59], calculates how well a feature splits the trials
into their corresponding classes. This is a natural choice for Random Forests, as the same criterion is used to
build the trees themselves. Instead of training and evaluating separate models for each combination of IMUs,
this approach requires training only one Random Forest model that comprises all 17 IMUs. Then Feature
Importance, calculated from this model, indicates how much an individual feature is contributing. For each
IMU, we use multiple features (mean, variance, etc.). Therefore, we aggregate the features belonging to
the same IMU using summation to infer an individual IMU’s importance. Here, the IMU with the highest
importance score is essential for the classiication, and the one with the lowest score contributes the least
in the classiication.

• Permutation Importance is a posthoc interpretation metric to calculate the importance of a feature. Here, a
model that comprises all IMUs is trained and evaluated on the original dataset. For a speciic feature, all
the values in the test data are then randomly permutated; the feature, therefore, no longer provides useful
information. The model is evaluated again on this corrupted dataset and the diference in performance
between the original and the corrupted dataset is computed. The larger the drop in performance, the more
important is the feature [9]. This approach needs no further training and only one additional evaluation
for each feature. The importance of an IMU is again calculated by summing the importances of its features.
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Both proxy metrices provide an importance score for each IMU. Given a desired IMU count � , one could
simply choose the layout created from the top � IMUs, based on their importance score. However, in practice, it
is beneicial to expand the search space of possible "top" layouts. In particular, we search through all possible
combinations of the top � IMUs (based on importance) chosen � at a time (��� ). We choose a � such that the total
number of layouts possible with the top � IMUs (��� ) is at least 1% (or 10% if � <= 3) of the total number of
possible layouts for the given count (17�� ) and train all those (��� ) models. For instance, if the desired IMU count
is � = 5, we would choose � = 9, since (9�5 > 0.01 × (17�5) and thus we would train 126 models. Additionally,
modifying this threshold of 1% allows for a user-deined trade-of between evaluation time and sparse layout
performance.

5.1 Validation of SparseIMU Method with the Combinatorial Maximum
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Fig. 14. Comparison between the F1 Score of layouts from the maximum combinatorial (see Fig. 6) and F1 score achieved by
the layouts recommended from Feature and Permutation Importance.

To benchmark the selections generated from the two proxy metrics (Feature and Permutation Importance), we use
the IMU layouts from our combinatorial results that achieved the maximum F1 score in Section 4.2. To quantify
the diferences, we obtain a Spearman’s correlation (�) between the F1 score from the max. combinatorial layout
and the layouts from the two metrics. Permutation Importance received � = 0.7785 for the Freehand, 0.6617
for the Grasping, and 0.8864 for the combined condition (all p<0.005). In contrast, Feature Importance received
considerably higher correlations, with � = 0.8630, 0.9380, and 0.9419 for the respective conditions (p<0.005). The
high correlation using Feature Importance is also visible in Figure 14, where the layouts consistently obtained
an F1 score closer to the best performance in the combinatorial results. Therefore, we use this metric further to
calculate the computation time.

Runtime. We now quantify the signiicant reduction of computation time required to select sparse layouts
with the proposed SparseIMU method using Feature Importance. Given the 323K models needed to evaluate the
entire combinatorial space, we used our institution’s cluster system with a 40-core setup. Of note, this high-end
coniguration machine used in our combinatorial results is not widely accessible. In contrast, we evaluate our
rapid method’s performance on a commodity laptop (8-core MacBook Air). As shown in Figure 15, the time
required to ind the sparse layout by our method is signiicantly shorter, despite the use of a commodity laptop.
This reduction is possible due to the considerably smaller number of model training required across each IMU
count. For instance, if we were looking for a layout with � = 5 IMUs out of � = 17 possible IMUs in the Freehand
condition, the time reduces from 3 mins on the compute cluster to 1 minute on a consumer-grade laptop. Moreover,
for Grasping Microgestures and Both Combined conditions, it reduces from about 50 mins to 5 mins and from
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1 hour to about 6 mins, respectively. While it takes longer to ind solutions for IMU counts 7-11, we note that
the method still performs signiicantly faster than the baseline. Moreover, we expect that layouts with this large
number of IMUs need to be rarely considered, since going beyond 3ś4 IMUs will only lead to a maximum increase
of 4% in the F1 score, as we have shown above (see Figure 6). Overall, the reduction in time achieved by our
method on a commodity laptop ofers strong beneits for rapid iteration. In the next section, we use our method
in a computational design tool.
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Fig. 15. Runtime comparison between SparseIMU method and the Combinatorial Search for all three conditions: Freehand,
Grasping, and Both Combined.

6 COMPUTATIONAL DESIGN TOOL FOR RAPID SELECTION OF CUSTOM SPARSE LAYOUTS

Based on the SparseIMU method for selecting IMU layouts, we contribute a computational design tool. It assists
designers in the following tasks:

• Finding a sparse IMU layout that achieves high gesture recognition accuracy: Using the designer’s speciica-
tions, the tool selects optimal designs in near real time and indicates the expected recognition accuracy. This
also allows the designer to quickly obtain an initial understanding of how well a desired set of microgestures
can be recognized while the user is holding certain objects. The design tool assists designers in locating
ingers and precisely locating the segment of the inger where the IMU should be placed.

• Exploring location alternatives: Considerations of ergonomic wearability or aspects inherent to certain
application cases may restrict the space where IMUs can be deployed on the user’s hand. For instance, a
smart ring with an in-built IMU can be more suitably placed on the ring inger than the thumb. And an
application case involving dexterous manipulation of objects may beneit from IMUs placed on the proximal
phalanges, rather than close to the ingertips. The tool allows the designer to restrict what locations can be
augmented with IMUs, and to quickly explore alternatives.

• Finding gestures that perform well: While it is understood that not all gestures are compatible and will have
a high performance for a speciic set of objects and constraints, one key functionality of the design tool is
to provide a visual representation that depicts the performance of the individual gestures. This enables the
designer to quickly inspect which gestures perform well and which do not, and choose the most compatible
gestures that ofer high recognition accuracy.
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Fig. 16. Screenshot of the computational design tool for designing sparse IMU layouts. (a) User can select Freehand and/or
multiple Grasp variations. (b) The tool automatically recommends possible gesture combinations with three fingers. (c)
Additional constraints with respect to the placement of the IMUs can be specified. (d) The number of required IMUs can be
selected and buton click generates the results in form of (e), a confusion matrix showing the gesture-wise performance and
an overall estimated F1 score, and (f), the location of the IMUs present in the sparse IMU layout.

A screenshot of the design tool is shown in Figure 16. The designer irst selects Freehand and/or a set of Grasp
variations(s) that the microgestures should be compatible with. Next, she selects the set of microgestures that
shall be recognized and indicates which ingers are used for gesturing. Then, the designer can place additional
constraints for IMU placement. Entire ingers or individual inger segments, as well as the back of the hand or
wrist can be added or removed from the set of possible locations. As the last step, the designer selects the desired
number of IMUs, to trade-of between a minimal or more complete instrumentation of the hand. With the click of
a button, the IMU layout is then selected.
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To visually present the recognition accuracy of chosen gestures, the tool displays a confusion matrix, along
with location of the individual IMUs on the hand. If the designer is not satisied with the Tool’s recommendation,
she can quickly explore options in an iterative manner. For instance, she may ine-tune the set of gestures or
explore alternative locations for placing IMUs.

Implementation. It is noteworthy that our tool is diferent from a conventional lookup table which would
require 17.5 trillions of entries to cover the various combinations of IMUs, subsets of gestures and grasp variations.
Instead, by training only a few models using the SparseIMU method, our tool supports every possible custom user
input while minimizing the computational complexity and storage. Furthermore, it allows the designer to rapidly
iterate on multiple custom input options. Speciically, the tool uses the microgestures dataset and the SparseIMU
method to identify the optimal IMU layout for a given set of requirements and constraints. The tool creates new
classiication models with our initial 80:20 split of train and test data. In addition to the required gestures, a Static
hold is automatically added as a negative class. For generating the confusion matrix and an estimated accuracy,
we use our test set. The Flask web framework for Python was used to create the tool’s back-end. The front-end
was styled using the Bootstrap toolkit, and JavaScript was used for client-side scripting. The Snap.svg JavaScript
library was used to render the selected IMU layout.

# Condition Grasp Variations Gestures IMU Constraints
Required 

IMU Count
Max. F1 score 

from Combinatorial 
F1 score 

from Tool

1 Freehand Freehand

Thumb Adduction, Middle Abduction, 
Middle Circumduction, Thumb Tapping, 
Index Flexion, Middle Tapping, Middle 
Extension, Thumb Extension, Index 
Circumduction

anywhere but Thumb 3 0.90 0.88

2 Freehand Freehand
Middle Abduction, Thumb Tapping, 
Middle Extension, Middle Circumduction

anywhere but Index 5 1.00 1.00

3 Grasping
Cylindrical-S, Cylindrical-
L, Hook-L, Palmar-S, 
Spherical-S, Tip-L

Middle Extension, Middle Abduction, 
Index Tapping, Index Adduction, Index 
Abduction, Middle Circumduction, Middle 
Flexion, Middle Tapping, Thumb 
Adduction

anywhere but Middle 3 0.81 0.79

4 Grasping Palmar-S, Tip-S
Middle Adduction, Middle Flexion, Middle 
Circumduction, Middle Tapping

anywhere but Ring 5 1.00 0.92

5 Freehand + Grasping

Freehand, Palmar-L, 
Hook-S, Cylindrical-S, 
Tip-L, Spherical-S, 
Spherical-L

Index Tapping, Thumb Adduction, Thumb 
Circumduction, Index Flexion, Middle 
Tapping, Thumb Abduction, Thumb 
Extension, Middle Extension, Thumb 
Tapping

anywhere but Pinky 3 0.95 0.95

6 Freehand + Grasping
Freehand, Cylindrical-S, 
Palmar-L

Thumb Adduction, Index Circumduction, 
Middle Tapping, Thumb Tapping

anywhere 5 1.00 1.00

Table 1. Comparison of maximum F1 score from Combinatorial Search and Tool Output for six example cases. It includes the
randomly selected grasp variations, gestures, user-defined constraints, and required IMU count. For the classification, we
also had a negative class (Static hold) in each case.

6.1 Tool Evaluation

In addition to the validation of the SparseIMU method in section 5.1, we performed another benchmarking
to compare the tool’s output with the combinatorial results when the designer applies constraints and opts
for choosing a subset of grasp variation and gestures. Therefore we created six example cases covering all
three conditions. We randomly selected grasp variations, gestures and added inger-wise placement constraints.
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Informed by results from the irst validation study, we chose two variations of IMU counts that we consider
particularly promising for applications: 3 IMUs for a good recognition performance with very good wearability
due to the low number of IMUs; and 5 IMUs for further increased recognition performance with a level of
wearability that is still acceptable in many applications. We compared our tool’s estimation by creating new
combinatorial results for each case.

Results. Table 1 lists the example cases along with the results. In ive out of six cases, the tool selected layouts
that achieved an F1 score that was as high as the best performing combinatorial result or a maximum of 2% lower.
The largest diference of 8% occurred in case 4, wherein the tool selected a layout with an F1 score of 0.92, while
the best performing combinatorial layout achieved a full 1.00. Noteworthy, the tool also performed well in case 3,
in which most of the randomly selected gestures involve the Middle inger whereas the constraint was to exclude
the Middle inger from placing IMUs. Despite this demanding constraint, the tool successfully selected a layout
that achieves performance close to the layout found by exploring the entire combinatorial space.

7 APPLICATION SCENARIOS

In this section, we present a set of four scenarios, each illustrating a realistic application of freehand and grasping
microgestures with diferent design requirements and constraints. We demonstrate how our computational design
tool can assist designers in deciding between various layouts, which is a non-trivial problem potentially requiring
a trade-of, and can help in reining IMU-based sensing solutions.

7.1 Kitchen: Supporting Diverse Objects with Minimal Instrumentation

High-level Requirements

Objects/Grasps Diverse: bottle, knife, pestle, cup

Gestures Concise: adduction, abduction, tap

Designer-specified Constraints

Gesturing Fingers Free: any finger

Required IMU Count 1 IMU

Placement of IMUs Restricted: exclude fingers

Tool 
Generated

Constraint
Specific

Designer
Tweaked

estimated F1 score

0.994 0.768 0.826

a b c

Fig. 17. Supporting diverse objects a) with minimal instrumentation b) in a smart kitchen scenario requires a trade-of
between F1 score and IMU postion c).

Smart kitchens, providing in-situ instructions while cooking, have been a popular research area over the last
decade [50]. We envision our computational design tool to support a designer, Alice, in the development of
an in-situ recipe manager that supports information access using microgestures while cooking. For her irst
prototype, Alice wants to enable microgestures on four objects commonly found in the kitchen: knife, bottle,
cup and pestle (cf., Fig. 17-a). For browsing a recipe, her application requires a small, concise set of gestures:
back (abduction), forward (adduction) and select (tap). Due to frequent hand washing, the layout should be
minimal (1 IMU) and restricted to the back of the hand or wrist (cf., Fig. 17-b).
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Tool Output: With the selection of objects and gestures (and no further constraints imposed), the computational
design tool suggests the thumb as common inger capable of performing all desired gestures, and the thumb’s
middle segment for IMU placement. Being ‘most ideal’, this sensor location achieves an F1 score of 99.4% (cf.,
Figure 17-c). However, Alice, excluded the ingers as sensor locations for sanitary reasons. This restrains sensor
placement to the back of the hand and wrist, which achieve an F1 score of 76.8% and 56.6% respectively. For
both, the confusion matrices reveal that the adduction gesture has a lower score, likely due to the large distance
between the IMU and the gesturing inger. As a result, Alice settles on a trade-of between IMU location and
available gestures. To keep the IMU position on the back-of-the-hand, she updates her design to include only tap
and abduction gestures, increasing F1 score to 82.6%.

7.2 On-the-Go Interaction

7.2.1 Sensor Placement on Non-Gesturing Finger. As voice user interfaces are oftentimes prone to false activa-
tion [80], wake-gestures are an attractive remedy [73, 105, 106]. Bob aims to explore wake-gestures that work
in on-the-go scenarios where both hands are occupied, e.g., while carrying two bags or a box (cf., Fig. 18-a).
Furthermore, he intends to leverage an existing smart ring that he intends to ‘hack’ to access its IMU data. It does
not matter which inger performs the gesture. However, ideally, the ring would keep its current position: worn
on the ring inger’s proximal segment.

High-level Requirements

Objects/Grasps Concise: bag, box

Gestures Minimal: circle

Designer-specified Constraints

Gesturing Fingers Free: any finger

Required IMU Count 1 IMU

Placement of IMUs Pre-defined: fixed placement

Thumb

Gesture

Index

Gesture

Middle

Gesture

estimated F1 score

0.822 0.873 0.975

a b c

Fig. 18. An on-the-go scenario a) with pre-defined sensor placement on a non-gesturing finger b) leverages co-activation c).

Tool Output: Bob starts by evaluating the circle gesture performed with the thumb and the IMU present on
the ring inger. The tool outputs an F1 score estimate of 82.2%. As wake-gestures should be resilient to false
activation, Bob is not satisied yet and explores further possibilities. As the position of the IMU is non-negotiable,
he includes index and middle as gesturing ingers which achieve an F1 score of 87.3% and 97.5% respectively.
The middle inger’s promising performance (97.5%) is explained with the higher co-activation sensed on the ring
inger (where the sensor is worn). Here, the computational design Tool allowed Bob to iteratively explore the
gesture space and inally arrive at a tailored solution.

7.2.2 Finding Unambiguous Combination of Gestures. Listening to music while running is a typical combination,
but controlling the music app on a smartphone or smartwatch’s touchscreen requires Taylor, a frequent runner,
to take unplanned breaks as shown in Figure 19-a. Conventionally, she needs to pause her run for performing the
desired command (switch tracks or play/pause). These frequent and unnecessary halts for simple inputs afect
her lap timings. She would prefer to use her middle inger for gesturing since she keeps switching the index

ACM Trans. Comput.-Hum. Interact.



28 • Sharma, et al.

and thumb poses in diferent ist forms while running. Her requirements are only for three gestures, including
Tap, Flexion, and Extension. Also, due to vigorous hand movements and to keep the IMU irmly attached to
her inger, she chooses to place the IMU ring in the proximal segment, which can be on any inger (see Figure 19-b).

High-level Requirements

Objects/Grasps Concise: freehand

Gestures Minimal: tap, flexion, extension

Designer-specified Constraints

Gesturing Fingers *�stricted: only middle

Required IMU Count 1 IMU

Placement of IMUs Restricted: only proximal segment

Tool 
Generated

Designer
Tweaked

estimated F1 score

0.872 0.949

a b c

Fig. 19. Supporting Freehand a) with minimal but clearly distinguishable gesture set b) in a running scenario with a restricted
placement choice c).

Tool Output: Taylor started by opting for Freehand gesture and then made her gesture choices, and selected
all ingers’ proximal segment. As one’s intuition, the tool suggested placing the IMU on the Middle Finger’s
proximal segment. It predicts an estimated score of 87.2%. By analyzing the confusion matrix, Taylor found
out Flexion and Tap gestures get confused and subsequently decided to ind the performance of other gestures.
Using the rapid evaluation provided by the tool, she found out that replacing Flexion with Abduction solves this
issue, and an estimated F1 score of 95% is possible (see Figure 19-c). Here, the tool was beneicial in inding an
alternative gesture that can be detected at a higher performance while preserving all the other requirements.

7.3 VR Controller: Diverse Gestures with Minimal IMUs

!�gh-le(el Req,ireme/ts

��#ects�Grasps Mi/imal/Transferred: VR controller

Gestures Extensive: as many as possible

Designer-specified Constraints

Gesturing Fingers Restricted: exclude index

Required IMU Count 3-4 IMUs

Placement of IMUs Restricted: exclude index

a b c

IMU 
Count = 14

IMU
Count = 3

Designer
Tweaked

estimated F1 score

0.802 0.805 0.843

Fig. 20. Minimal setup with 3ś4 IMUs a) with maximum diverse set of gestures b) finding the balance between gestures and
accuracy.
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Exploring diverse gestural inputs for VR [48] has been a popular area for experimentation in HCI and media arts.
Dan plans a VR media arts installation which uses microgestures on a hand-held VR controller to contrast private
and public interactions by subtly expanding the controller’s range of functions. Thus, as demonstrated by [38],
he aims for a miniaturized device equipped with 3ś4 IMUs in combination of a commodity VR controller. He
wants to avoid placing IMUs on the index inger which operates the VR contoller’s push button and also not use
it as a gesturing inger. To facilitate playful public or private interactions, he hopes to support as many diferent
gestures as possible.

Tool Output: Dan explores the solution space for all possible IMU locations excluding the index inger (14
IMUs total). The tool yields an F1 score of 80.2% if 12 gestures are supported. Dan iteratively decreases the IMU
count (while keeping the amount of gestures to 12) inspecting performance after each decrement. He identiies a
saturation in F1 score at 3 IMUs (80.5%), which illustrates that a higher number of IMUs does not necessarily
imply better performance (cf., Fig. 20-c). After further tweaking their coniguration, Dan settles on a 3-IMU
coniguration and a set of 10 gestures. This choice is a trade-of allowing for a relatively high amount of gestures
while still achieving an F1 score of 84.3%. As Dan aims for a rather playful, explorative VR installation, he
considers this level of score acceptable. This highlights how the choice of a inal layout depends on the weight
the designer assigns to the diferent parameters (e.g., amount of gestures vs. performance) which in turn strongly
relate to the speciic application (e.g., playful vs. safety-critical purposes).

7.4 Electronics Workshop: Microgestures while Performing High-Precision Tasks

Carla seeks to explore how users can make use of microgestures to access additional instructions during high-
precision tasks such as soldering. She envisions tools such as a soldering iron, soldering lead, or a screwdriver
(cf., Fig. 21-a). As these tools are not available in our dataset, she uses our computational design tool to make
an informed best guess by determining a set of initial layouts to elaborate on. Here, our Tool draws strength
from the similarity in grasp types: the soldering iron (not present in the dataset) is typically held in a fashion
similar to the pen (present in the dataset); holding ine soldering lead or wire in place resembles holding a needle,
and holding a screwdriver demonstrates a similar (cylindrical) grasp like holding a knife. Carla envisions four
gestures: forward, backward, select, and circle which she intends to use to browse an instruction manual. She
furthermore excludes thumb and index ingerśboth as gesturing ingers and for IMU placementśto not interfere
with the high-precision soldering task, and constrains the number of IMUs to 2 or 3 (cf., Fig. 21-b).

High-le�el Req�ireme�ts

Objects/Grasps Transferred: pen, needle, knife

Gestures Concise: adduction, abduction, tap, circle

Designer-specified Constraints

Gesturing Fingers Restricted: exclude thumb and index

Required IMU Count 2-3 IMUs

Placement of IMUs Restricted: exclude thumb and index

IMU Count = 1 Count = 2 Count = 3

estimated F1 score

0.866

0.813 0.799

a b c

~Prox
Segment

~Midd
Segment

Designer 
Tweaked

0.853 0.887

0.934

Fig. 21. Transfer of grasps a) with restrictions on Thumb and Index b) finding the optimal finger segment c).
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Tool Output: The computational design tool suggests placing the IMUs on the middle inger which achieves a
competitive F1 score of 88.7% when 3 IMUs are used. Yet, at closer inspection, the tool also reveals that accuracy
varies depending on the inger segment on which the IMU is placed, ranging from 80% to 88%. Hence, the choice
of inger segment is crucial. Moreover, the tool shows that there is only 2% gain in score from placing 3 IMUs on
the middle and pinky inger (88.7%), compared to only one IMU on its middle segment. Thus, a single IMU is
suicient to cover all gestures Carla had planned for her scenario. Further exploration shows that an increase
in accuracy can be obtained for the 1-IMU layout to 93.4% by removing the adduction gesture (cf. Fig. 21-c). As
follow up, Carla conducts a small-scale data collection using the 1-IMU layout recommended by the tool. Here,
the tool provided a best guess in terms of IMU placement and gesture choice which served as a strong foundation
for further iterations.

8 COMPARING THE TOOL’S OUTPUT WITH LIVE GESTURE RECOGNITION

To further demonstrate the tool’s practical usefulness and generalizability to real-world applications, we collected
another dataset with diferent hardware conigurations and participants. This section compares the predicated F1
score from the computational tool with another system deployed for live gesture recognition.

Bluetooth-enabled 
IMU device

Scenario 7.1 Scenario 7.2.1 Scenario 7.2.2 Live gesture recognition

� b 	

Fig. 22. Minimal wireless hardware with batery a); scenarios involving multiple objects and freehand b); live classification of
gestures c).

Apparatus. With a focus on mobility and wearability, we developed a working wireless system that consists of
a 9-Axis IMU (MPU9250, InvenSense Inc., CA, USA) and a Bluetooth module. As with previous work for gesture
detection with a low-power wearable device [17], we sampled the accelerometer at 35 Hz (lower than in our
microgestures dataset). Similarly, gyroscope and magnetometer were sampled at 35 Hz. For powering the device,
we used a 2000mAh (DTP634169) lithium polymer battery. We also created a 3D printed casing with hooks to
attach velcro straps so that the device can be easily worn on diferent ingers and varied hand sizes. An additional
velcro strap and adhesive tape were used to aix the battery to the arm such that it would not interfere with hand
actions. We created two such devices (as shown in Figure 22-a) and synchronized them to enable data collection
from multiple hand segments simultaneously. Raw data from the devices is wirelessly streamed over Bluetooth to
a PC for live classiication.
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Scenarios. To keep the data collection feasible, we selected three scenarios from Section 7.1, 7.2.1 and 7.2.2.
These represent multiple settings with gestures on diverse objects, on-the-go interaction with sensor placement
on the non-gesturing inger, and inding an unambiguous combination of gestures for freehand input, as shown
in Figure 22-b.

Participants. We recruited 6 right-handed participants (3M, 3F, mean age: 22.2; SD: 2.5) with an average hand
sizes fromWrist to the tip of Thumb = 132mm (SD:9mm), Index = 168mm (SD:10mm), Middle = 175mm (SD:12mm),
Ring = 163mm (SD:10mm), Pinky = 144mm (SD:10mm). It is noteworthy that all 6 participants were diferent
from those who participated in creating the microgestures dataset (section 3.4).

Task and Procedure. We used the same procedure as described in Section 3.5 i.e. we counterbalanced the two
conditions (Freehand and Grasping) and further counterbalanced the order of objects in each scenario. Once the
object or freehand condition was selected, we presented the gesture/non-gesture states in a randomized order.
We developed a custom software tool using Flask framework in Python to label the trials that the experimenter
controlled during data collection. Overall, we recorded 5 trials for each gesture and Static hold for a negative
class, totaling 870 trials (145 trials per participant), comprising 10 unique gestures and static hold classes on 7
diferent object/grasp types.

To evaluate a potential bias resulting from orientation, the data collection for this experiment was performed
in a room that was diferent from the microgestures dataset. Additionally, the orientation of the participants
was rotated by 90 degrees left from their original orientation in the microgestures dataset. The sitting/standing
posture and the start and stop for labeling were similar for all scenarios as in the microgestures dataset, except for
the scenario with freehand gestures (Figure 22-c). Here, we kept the posture to standing as deined in the scenario
and marked the start and stop of gestures when the arm started swaying upwards from the standstill posture and
returned to the initial state. Hence, the assumption is that even though coarse hand movement is involved, IMU
placement is still crucial for detecting ine inger movements (gestures). The complete data collection for each
participant took about 45 minutes.

Feature Extraction and Classiication Model. In order to perform a systematic comparison, we extracted the same
six features as used in the analyses above and in the computational design tool. These features are mean, median,
minimum, standard deviation, and variance calculated from each of the 9-axis of the IMU. It is important to note
that live classiication requires a time window of streamed data as opposed to our tool in which we classiied the
entire trial. Therefore, the features were extracted on a window size of 90 and an overlap of 70 frames - only for
the data collected in this study. The tool conigurations remain untouched, which extracts features over the entire
trial. We also used the same classiier with default parameters as used in our computational tool, i.e., Random
Forest (RF) with max_depth = 30. We trained a separate grasp-independent multiclass model (not encoding
grasp/object information in the class labels but only gestures) for each scenario and IMU placement. Since our
participant count is lower than in the microgestures dataset, in addition to the user-independent models with
leave-one-person-out cross validation training and testing, we also created user-dependent models and evaluated
with leave-one-trial-out cross validation technique.

Results. Table 2 shows the comparison between the estimated F1 score from the computational tool and the
performance achieved in the live classiication. To understand the relative performance across conigurations
within a scenario, we calculate their normalized F1 score. The normalized F1 score is calculated by normalizing the
F1 score of a given coniguration with respect to the highest-performing coniguration within this scenario. The
table shows the normalized F1 scores (represented as percentages) along with absolute values for completeness.
We observed that even with diferent hardware and participants, the results for live recognition are in congruence
with the tool’s prediction. Speciically, the tool correctly predicts the performance ranking of conigurations,
and the normalized F1 scores across conigurations matches reasonably closely. Of course, this does not hold
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Scenario 7.1
Supporting Diverse Objects with Minimal 

Instrumentation

Scenario 7.2.1
Sensor Placement on Non-Gesturing Finger

Scenario 7.2.2
Finding Unambiguous 

Combination of Gestures

Objects/Grasps bottle, knife, pestle, cup bag, box freehand

Gestures

Thumb 
Adduction, 

Thumb 
Abduction, 
Thumb Tap

Thumb 
Adduction, 

Thumb 
Abduction, 
Thumb Tap

Thumb 
Abduction, 
Thumb Tap

Thumb Circle Index Circle Middle Circle

Middle Tap, 
Middle Flexion, 

Middle 
Extension

Middle Tap, 
Middle 

Abduction, 
Middle 

Extension

IMU placement

Computational Design 
Tool

100%

I

77%

III

83%

II

84%

III

90%

II

100%

I

92%

II

100%

I
0.994 0.768 0.826 0.822 0.873 0.975 0.872 0.949

Live 
Classification 

User-independent
100%

I

67%

III

79%

II

93%

III

98%

II

100%

I

95%

II

100%

I
0.860 0.577 0.682 0.903 0.953 0.973 0.615 0.644

User-dependent
100%

I

95%

III

98%

II

98%

III

99%

II

100%

I

96%

II

100%

I
0.902 0.857 0.886 0.949 0.959 0.969 0.820 0.857

Table 2. Comparison of F1 scores from the computational design tool output and live classification. For each of the three
scenarios, the object/grasp information, gesture, and location of IMU placement are described. We also included a negative
class (Static hold) wrt. objects/grasps. For each scenario, the normalized F1 score of a configuration is calculated by normalizing
it to the highest achieved F1 score. For completeness, we also report the absolute F1 score obtained for each configuration
below the ranking. The performance ranking is denoted in roman characters.

true for the absolute values, which strongly depend on the (largely difering) settings of a coniguration (live
classiier, diferent hardware, model, train trials). However, the normalized F1 score gives an indication of what
changes (improvement or deterioration) to expect when switching from one coniguration to a diferent one. It is
noteworthy that our results are consistent for all three scenarios with user-dependent as well as independent
models, demonstrating the generalizability of our method.

9 DISCUSSION, LIMITATIONS, AND FUTURE WORK

While this work takes a signiicant irst step towards rapid dense-to-sparse exploration of IMU layouts for inger
microgestures, there are several aspects that need to be considered for extending this line of research:

9.1 Grasps, Objects, and Gestures in and beyond the Microgestures dataset

When constructing our dataset, we leveraged prior work on grasp types [79] to build six categories and selected
representative small and large objects as well as corresponding realistic actions (cf., Figure 3). While exhaustively
covering all conceivable objects for each grasp type is impossible, we anticipate generalizability for objects
not present in the dataset. A few characteristics of inger movements directly depend on the grasp type and
hence generalize for objects beyond the ones present in the dataset, such as the feasibility of gestures with a
speciic inger, and the co-activation of the non-gesturing inger. There are few other characteristics of object
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manipulation which might not generalize and which future work needs to address. For example, two objects
may aford the same grasp type but fulill diferent purposes (e.g., pen vs. soldering iron) and require diferent
movements (luent writing vs. a steady hold for soldering). Our computational design tool incorporates this
limitation by assuming the user would briely pause the primary activity while keeping the object in hand. The
additionally collected activity data allows future work to use it for Transfer Learning [109] as both gesture and
non-gesture conditions are present.

Moreover, future work may choose to augment our dataset with additional objects and activities or gestures. A
promising area to expand to are rhythmic gestures incorporating a larger temporal duration, or repetitive gestures
(e.g., double taps), which indicate beneits as robust wake-gestures or hot words [54]. It will also be relevant to
study objects with advanced material properties, such as pronounced surface texture, friction, or deformability.
For reasons of feasibility, our dataset contains gestures performed by Thumb, Index, and Middle ingers. Future
work should investigate gestures performed by other ingers. Our dataset is collected using right-handed and
young participants. Future work may study how this data generalizes to other populations such as the elderly
(potentially limited range of motion, tremor) or children (smaller hands). We have carefully selected diferent
object geometries that aford diferent orientations of hand and ingers to reduce potential dataset bias. For
instance, the thumb faces upwards while holding the book, but it is sideways while holding the bottle. As a next
step, future work may use data augmentation techniques to arbitrary facing (or even orientation) of the head by
adding randomized orientation ofsets to the raw data [97].
Data collection and labeling is a well-known problem in HCI and Machine Learning; the manually-labeled

frames in our dataset can provide a quality source for auto-labeling of new data, reducing the tedious manual
eforts of data labeling. Finally, it is worthwhile mentioning that our dataset ofers a starting point to enable
always-available input using IMUs. However, it would be fruitful if future works investigate efortless methods
for data collection and labeling in the wild.

9.2 Computing, Refining, and Transferring Layout Suggestions

In this work, we contributed a tool that assists in rapidly iterating through layout suggestions for IMU placement.
We understand our computational design tool’s output not as a inal choice, but as a ‘best guess’ for further
reinement. For instance, if a layout with multiple IMUs is selected, an inverse kinematics (IK) model could be
applied post-hoc to the set of suggested layouts to further leverage the inherent co-activation between the ingers
and reine the inal layout. Analogously, the current version of our tool comprises F1 score as evaluation criteria,
but does not cover other metrics. In cases where robustness against false activation is a key design concern,
individually showing precision/recall scores might be beneicial. Likewise, while our tool’s design is relatively
easy to use, visually depicting the gestures to instruct new users and strategies for an alternative representation
of the confusion matrix and the F1 score can help understand the classiication results.
We anticipate that the tool’s layout suggestions can serve as a valuable starting point to quickly reduce

the design space and for further improvement of performance in an end-to-end working system. Additional
techniques such as collecting more training data to include additional variations, adding more features, performing
hyperparameter tuning to tailor the classiier’s behavior to the speciic dataset, creating an ensemble of classiiers,
and optimizing the hardware’s sample rate to improve the recognition rate can be applied, if desired. Our indings
show that grasp-dependent models may further improve the classiication performance. This also suggests
that the combination of target Freehand and/or Grasp variations afects the model’s performance, where our
computational design tool can be useful in rapid testing and iterations to ind the balance between users’ choice
and classiication performance. Currently, our tool suggests sensor placement based on gestures and inger
choices. However, future work would include multiple alternatives at the irst go or even further, it may work
conversely as well, i.e., given the placement choice of sensors and the count, the tool will recommend the best
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gestures that can be detected. Inspired by Kohlsdorf et al. [49], future versions of the tool may also incorporate
techniques to estimate the chances of false positives for each gesture by comparing the selected gestures to a
large corpus of everyday activity data. This would facilitate the end-to-end framework for gesture recognition
and the practical implications of real-world deployments.

While we performed user-independent evaluations in our analysis, in our initial tests, we found the performance
of user-dependent models is higher with the same model architecture. With the advances in deep learning models
and their interpretability methods, we believe a more sophisticated model pipeline can be constructed based
on our analysis results. This would also help researchers in benchmarking diferent techniques to select sparse
layouts.
Our current layout selections are measured by classiication performance, but other factors like the required

amount of training data, battery performance, hardware cost or dimensions of the sensing device could be
integrated into future versions of the tool. We also see some possibility that suggestions prove useful beyond their
application with IMU data. While there is some uncertainty, other approaches making use of high-dimensional
data from diferent sensors (e.g., EMG/FSR [16, 65, 77]) can potentially expand upon the suggested layouts.

10 CONCLUSION

In this work, we presented the irst computational design approach for realizing sparse IMU layouts to recognize
microgestures efectively ś with hands-free and while holding everyday object conditions. Our SparseIMU method
that uses a customized version of a well-known ML metric (Feature Importance) to select sparse IMU layouts
rapidly. We also contributed a computational design tool that selects sparse IMU layouts based on higher-level
inputs (objects, gestures) and constraints (e.g., choice of placement) speciied by the designer. We empirically
validated the accuracy of the IMU layouts selected by our design tool with the combinatorial results obtained
by training 393, 213 models. Selecting a sparse layout with our SparseIMU method is signiicantly faster than
exploring the complete combinatorial space and shows a high quantitative agreement. We also contribute the
irst microgestures dataset, consisting of 18 gestures and 3 non-gesture states performed with freehand and 12
objects covering all the six grasp types. Using a dense network of 17 synchronized IMUs placed all over the
dominant hand, we collected the data from 12 participants. Our dataset comprises fully annotated dense IMU
data consisting of 13,860 trials (3 million frames). Through our dataset, we believe new insights can be derived
not only for HCI research but might also be helpful for an array of other ields, including machine learning,
optimization and bio-mechanics.

Our analysis revealed three major indings: i) With only 3ś4 IMUs, an F1 score of about 90% can be achieved
in a challenging classiication task with 18 classes of Freehand and Grasping microgestures, ii) placing an IMU
on a diferent segment on the same inger may signiicantly afect the classiication performance, and iii) we
demonstrated the feasibility of detecting gestures with an IMU placed on a non-gesturing inger. Finally, through
a set of systematically designed application cases and a user study, we demonstrate how our computational
design tool enables designers to employ a rapid and iterative design process for realizing microgestures for
diverse scenarios across multiple objects. Our contributions in this article take advantage of ingers’ dexterity and
uncover the sensing potential of IMUs towards bringing computing at user’s ingertips ś practically everywhere
and always.
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