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ABSTRACT 
We present EvoIsland, a scalable interactive evolutionary user 
interface framework inspired by the spatially isolated land masses 
seen on Earth. Our generalizable interaction system encourages 
creators to spatially explore a wide range of design possibilities 
through the combination, separation, and rearrangement of 
hexagonal tiles on a grid. As these tiles are grouped into island-
like clusters, localized populations of designs form through an 
underlying evolutionary system. The interactions that take place 
within EvoIsland provide content creators with new ways to 
shape, display and assess populations in evolutionary systems that 
produce a wide range of solutions with visual phenotype outputs. 

CCS CONCEPTS 
• Computing methodologies → Genetic algorithms; Neural 
networks; • Human-centered computing → Visualization. 
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1 INTRODUCTION 
Over the centuries, as life flourished across the crust of the Earth, 
species that were unfit for their environment were eliminated 
through the process of evolution [11]. Meanwhile, shifting 
tectonic plates and fluctuating sea levels have caused the 
geographic boarders of land masses to change, sparking new 
interactions between distinct groups of species. With these 
geological and evolutionary processes in mind, we have created 
an interactive system for guiding evolutionary design. Our 

EvoIsland system, inspired by Earth’s tectonic events, supports 
the rapid exploration and generation of design paths across a large 
search space of multiple branching solutions. Unlike common 
existing evolutionary user interface approaches [1, 38], EvoIsland 
enables viewers to continuously regroup and evolve multiple 
subpopulations of spatially distinct solutions through platform 
agnostic spatial interactions. To demonstrate the unique 
characteristics of our framework, we present a prototype 
multitouch application that employs the EvoIsland framework 
design to evolve the input vectors of a BigGAN generative 
adversarial network (GAN) [2]. We then compare our framework 
to existing evolutionary systems [17, 21, 35] and reflect on how 
EvoIsland supports the rapid interactive generation of multiple 
subpopulations of solutions at different scales. 

2 INTERACTIVE EVOLUTIONARY SYSTEMS 
Through selective breeding processes and the application of 
fitness optimization functions, evolutionary algorithms build 
upon Darwinist principles to iteratively generate solutions [15]. 
Evolutionary algorithms have demonstrated a capacity to 
generate a diverse set of solutions to design problems [25]. 
However, some tasks – such as generating works of art – have 
much more loosely defined goals which can be challenging to 
describe, leading to an underlying alignment problem between 
generative systems and humans [7]. Unlike purely computer 
generated approaches, interactive evolutionary systems prompt a 
human advisor to guide the generative process [13]. Through an 
implemented user interface, designers iteratively rank how fit 
each result is amongst a population in different evolutionary 
rounds, while an underlying evolutionary algorithm evolves the 
ranked results to generate new solutions over time. Some 
evolutionary interfaces have been shown to cause significant user 
fatigue due to the use of repetitive evaluation tasks [33]. Reducing 
the number of interactions required by interactive systems can 
reduce this user fatigue, but often limits the number of generated 
solutions presented at a given time. 

2.1 User Interfaces for Evolutionary Systems 
A common evolutionary user interface is the grid selection design, 
which is present across a variety of interactive systems, such as 
GAN input evolution [1, 38] and generative race track paths for 
video games [5] . The grid approach displays a 2D matrix of results 
on screen and prompts viewers to iteratively select one or more 
preferred solutions in distinct evolutionary rounds using a variety 
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of scoring systems [17, 22, 28]. While grid-style systems can 
display many results simultaneously, user fatigue can increase 
with the number of ranking tasks required in each evolutionary 
round [33]. Due to this constraint, grid-style systems typically 
display fewer than 20 solutions at a time. In the fitness zone 
framework [21], viewers drag and position generated solutions 
into different spatial regions on screen in consecutive 
evolutionary rounds to rank their fitness. These regions may have 
discrete fitness values or include a continuous range of values that 
change when phenotypes are positioned along an axis. Viewers 
using tournament evaluation interfaces select preferred evolved 
solutions in a perfect binary tree of branching rounds [35]. As 
deeper tree depths are generated, filtered solutions compete in 
“quarter final” rounds, similar to how athletes play a sports match. 

As an alternative approach for shaping the evolutionary 
paths of evolving agents, Mammen & Jacob invited designers to 
grow swarm data like a gardener by spatially adding nutrients to 
continuously sprouting designs within an evolving 3D scene [24]. 
The gardening analogy masks the complex operations taking 
place within the system’s underlying code and breaks free from 
the ridged rounds used in traditional evaluation interfaces. In a 
unique tangible approach, the novel PETRI system uses a number 
of small cylindrical smart devices with phenotypes displayed on 
their tops [26]. By shaking the tangible units, colliding multiple 
devices, and performing other gestures, viewers can physically 
control solutions generated by the evolutionary system. While 
only nine PETRI prototype nodes were developed, the authors 
speculate that the approach may be particularly helpful for 
evolving separate subpopulations of generated solutions. 
Hyperinteractive evolutionary computation systems can invoke a 
more positive user experience, while producing higher quality 
designs by putting individual operations of an evolutionary 
system in the control of the user [4]. These systems have a 
reduced reliance on automated underlying functions and provide 
more creative control over the generation of results when 
compared to pure evaluation task-based systems. 

2.2 Visualizing Evolutionary Data 
With clearly traceable histories of evolving solutions and 
consistent genome encodings, evolutionary systems are 
particularly well suited for exploring new visualization 
techniques. In an early investigation of evolutionary data 
visualization best practices, Pohlheim compared a variety of 
simple visualization techniques for a range of datasets [29], 
allowing viewers to review the path of an evolutionary algorithm 
over time. New approaches for visualizing tree structures that 
occur in evolutionary algorithms have also been developed by 
Daida et al [10], condensing the evolution of large populations 
into a small multiples [36] style grid. Taking design cues from 
desktop media library interfaces, EvoShelf [12] encourages 
viewers to organize and scrub through thousands of individual 
phenotype images of evolved swarm data by moving a computer 
cursor from left to right. Additionally, EvoShelf displays the full 
evolutionary histories of the data through the use of star plots and 
a ThemeRiver  visualization technique [16]. This overview+detail 
[8] approach to EvoShelf’s user interface provides viewers with 

the ability to simultaneously examine datasets at multiple levels 
of granularity. More recently ELICIT [9], a general-purpose tool 
for exploring evolutionary algorithms, introduces a variety of 
techniques for visualizing the lineage of evolving solutions. 
Entering immersive environments, EvoVersion [20] uses stacks of 
3D rings to visually encode evolutionary sessions, generations, 
and individual phenotype representations of the data itself. While 
retroactively visualizing generations of evolutionary populations 
can help viewers build an understanding of how a solution is 
achieved, interactive evolutionary systems often require viewers 
to continuously assess the current state of the evolutionary 
populations presented on screen. In developing our EvoIsland 
framework, we set out to incorporate visualization techniques 
into the interactive evolutionary process itself to allow viewers to 
quickly revisit and reflect on their previous selection choices as 
they evolve generated designs.  

3 EVOISLAND FRAMEWORK DESIGN 
The EvoIsland Framework features a generalizable interactive 
system of operators that support the rapid exploration of a wide 
range of outputs through spatial subpopulation management at 
different scales. In this next section, we provide an overview of 
the framework design and outline the Island Operators that serve 
as the system’s foundation. 

3.1 Overview 
EvoIsland is a generalizable interactive design framework that 
enables viewers to rapidly create, divide, grow, and combine 
subpopulations of evolutionary data. The system supports both 
fine-tuned manipulation of individual genomes and higher-scale 
directed evolution across evolutionary populations using a 
hyperinteractive approach [4]. As viewers interact with 
evolutionary data, EvoIsland provides a visual overview of 
individual genome states and groupings of similar solution 
clusters to communicate underlying evolutionary processes. 
The EvoIsland framework user interface is comprised of two 
primary elements: an evolutionary grid that snaps elements into 
a hexagonal pattern and evolutionary tiles that are placed onto the 
grid itself (Fig. 1). Each tile in the system contains a genome 
generated by an evolutionary algorithm and displays a visual 
phenotype representation of the genome. As viewers position tiles 
onto the grid, they can interactively and iteratively shape 
generated populations. Upon placement, a new genome is 
generated for the tile, taking into account the proxemic position 
and distances of neighboring tile genomes using a von Neumann 
neighborhood search [3]. Unlike four-sided rectangular grid 
systems, hexagonal grids support a search across six neighboring 
sides, providing viewers with more flexibility for generating 
related solutions. After adding multiple evolutionary tiles to the 
grid, interconnected island groupings begin to form that visually 
communicate distinct evolving subpopulations of solutions. The 
tile positions within the islands are then tracked and updated by 
the EvoIsland system as interactions take place, enabling unique 
operators that provide a means for directing results generated by 
an underlying evolutionary algorithm. 
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3.2 Island Operators 
Principal island operations performed on the EvoIsland grid alter 
relationships between distinct subpopulation groupings of tiles. In 
the EvoIsland Framework, we refer to these subpopulation 
groupings of tiles and the embedded genomes they encode as 
Islands. To communicate these operations, we refer to an example 
evolutionary system that evolves basic colors (Fig. 1) (for more 
details on implemented EvoIsland algorithms see Appx. A.1-3). 
The operations supported by the EvoIsland system include: 
1. Island Creation. An island is created when the viewer adds 

an evolutionary tile to the grid and the new tile does not have 
a neighboring tile. The system generates a new genome for 
the tile that serves as a starting point for the subpopulation. 

2. Island Growth. The growth of an island takes place when a 
tile is placed next to a single existing island formation. When 
growth occurs, the system’s crossover+mutation function 
uses the relative distances of existing tiles on the island to 
generate a spatially aware genome for the new tile. 

3. Island Joining. When the viewer adds a tile to the grid and 
two or more previously disconnected islands are connected, 
the populations of both islands combine to form a new, larger 
island. The crossover+mutation function uses the relative 
distances of existing tiles on both islands to generate a 
unifying genome for the new tile. 

4. Island Separation. An island is separated when the viewer 
removes a tile that solely connects two parts of a larger 
island, splitting an island into multiple subpopulations. After 
a separation occurs, the two islands follow different 
evolutionary paths that stem from the isolated populations. 

5. Island Shrinking. The shrinking of an island occurs when 
a tile is removed from an island and the remaining tiles in the 
formation continue to be interconnected after the removal. 

6. Island Destruction. An island is destroyed when the last 
remaining tile in an island formation is removed. 

4 EVOISLAND TOUCH 
Employing the EvoIsland framework, we developed EvoIsland 
Touch (Fig. 2). The interactive evolutionary iPad app supports the 
above Island Operators through multi-touch gestures and builds 
upon the framework with additional support for rapid 
subpopulation editing and selection features. 

4.1 System Architecture 
While EvoIsland Touch can be customized to support different 
genetic algorithms that produce visual outputs, to demonstrate its 
capabilities we developed an evolutionary system that evolves the 
input vectors of a BigGAN network [2]. BigGAN builds upon 
image synthesis techniques [27] to generate a diverse range of 
images across 1000 ImageNet classes [14]. Its input is comprised 
of a one-hot vector to specify the class of image to generate, a noise 
vector for activating different image class compositions, and a 
truncation value which modifies the result variation. While these 
networks can produce millions of output images, it can be 
challenging to predict how changing the inputs of the model 
affects generated images. Our EvoIsland framework seeks to 
improve interactions with such complex systems by using a 
human-in-the-loop approach that supports viewers as they search 
through large solution spaces.  

Figure 1: Underlying Island Operators in the EvoIsland Framework alter relationships between evolved subpopulations 
through the addition and removal of tiles on a grid. 

Figure 2: EvoIsland Touch System Architecture. 
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BigGAN Genome. To generate a wide range of images, the 
BigGAN neural network utilizes an input noise vector comprised 
of 128 unbounded float values. In EvoIsland Touch, this noise 
vector is embedded within the genome present in each 
evolutionary tile and is evolved through the interactive interface.  

BigGAN Phenotype. In our EvoIsland Touch app, the phenotype 
of generated images corresponds to the class vector of the 
BigGAN model and can be changed to update the tile views. 

BigGAN Crossover + Mutation. This BigGAN example for 
EvoIsland Touch uses CrossoverMutate as a crossover+mutation 
function that receives three inputs (Appx. A.1). The first input is 
a 3D parent array that contains all genomes in the existing island 
formation and their relative distances to the newly added genome. 
The second input is the mutation radius value between 0 and 1. 
Finally, the third input is a gradient value between 0 and 1. When 
the viewer creates a new island in the user interface, the function 
receives an empty parent array, then generates a new genome 
with random float values between 0 and 1 as a starting point for 
the evolving population. While the BigGAN neural network 
accepts input values outside of this range, values from the [0,1] 
interval produce images with relatively minimal artifacts. When 
the viewer adds to an existing island formation, the function 
selects genome values for the tile from the set of existing values 
on the island. Depending on the gradient value (Appx. A.2), 
genomes located within directly neighboring tiles have a higher 
probability of their values being selected for the crossover 
operation than tiles at further distances (Appx. A.2). We set this 
gradient value to 0.75, causing the genome values present in direct 
neighbor tiles to have a 75% probability of selection for the 
crossover function, while the tiles at further tile distances have 
increasingly less likelihoods of selection. Each genome value is 
then offset by a random amount within the mutation radius. 

BigGAN Selection. Our BigGAN evolutionary system ranks the 
fitness of each generated design by its similarity to other genomes 
in the island subpopulation such that more unique genomes are 
favored (Appx. A.3). The FindLeastFit algorithm calculates an 
average noise vector across the genomes of all tiles on the island. 
It then determines the fitness of each tile on the island by taking 
the sum difference between the tile’s genome noise vector values 
and the average noise vector values. Finally, the function returns 
the least fit genomes, based on this calculated fitness, for removal 
from the system. With this approach, as islands evolve over time 
in the app’s auto-evolve mode (Fig. 6), the generated tiles on each 
island diverge towards an appearance that is less homogenous.  

4.2 User Interface 
The EvoIsland Touch (Fig. 2) user interface includes two primary 
components, an interactive evolutionary scene for directly 
manipulating evolutionary tiles and an upper toolbar for 
performing various genetic actions on the scene. Standard pinch 
to zoom and two finger pan gestures are present throughout the 
evolutionary scene for navigation and popover menus include 
additional operators for subpopulation interactions. 

Evolutionary Scene. Here viewers have access to all tile 
operators outlined in the EvoIsland Framework and additional 
capabilities for more precise control of evolutionary 
subpopulations. Viewers can add, duplicate, select, edit, and 
remove evolutionary tiles to create and destroy islands. Tiles 

placed throughout the scene snap into formation on the 
evolutionary grid, visually indicated by light grey dots. Tapping 
on an empty space adds a new evolutionary tile to the scene and 
tapping on an existing tile removes it. Tiles may also be relocated 
to other grid positions by dragging. When a tile is added, an 
evolutionary algorithm generates a genome for the tile with a 
crossover+mutation algorithm, and then displays a visual 
phenotype image as its texture. Meanwhile, a long press on a tile 
presents a popover menu with the following options:  
1. Select. Tapping this option activates Selection Mode (Fig. 3), 

where viewers can tap to select multiple tiles and drag to 
relocate them. When tiles are selected, they hover above the 
main grid for positioning and snap to the closest available 
location on the grid upon deselection. A lower selection 
toolbar provides the ability to Consolidate the selected tiles 
into a single clustered island formation, Duplicate the 
selected tiles onto the main grid, or Remove the selected tiles 
from the scene entirely.  

2. Duplicate. Choosing this option also enters Selection Mode, 
but instantly duplicates the selected tile onto a nearby vacant 
space in the main evolutionary grid.  

3. Edit. Picking this option presents the Genome Editor window 
for adjusting the noise vector values of a selected genome 
directly (Fig. 4). The top half of the window displays the 
current visual phenotype representation of the tile, while 
selecting and editing the genome values is reserved for the 
bottom half of the window. Viewers can drag the large 
horizontal slider bar in the center of the window to update 
the value of the currently selected genome trait index or 
scrub their finger along miniature vertical bars on the bottom 
portion of the screen to select a different parameter to adjust. 
Updates to the genome are then reflected in the upper 
phenotype view.  

Figure 3: EvoIsland Touch Selection Mode. The viewer 
taps to select 5 tiles (A) and drags them to a new position 
(B). The viewer then taps Consolidate to merge the tiles 
into a unified island formation (C) and taps Duplicate 
twice to place copies of the selection onto the grid (D). 
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Toolbar. The upper toolbar provides access to a variety of 
additional tile manipulation actions through popover menus: 

1. Add Tile Menu. This menu contains two special tiles: a 
grower tile that automatically adds a set number of tiles to a 
connected island, and a destroyer tile that removes a specified 
number of least fit tiles from an island. Unlike many of the 
other features available in the toolbar, these actions operate 
on the population of a particular island, rather than affecting 
all islands on the grid.  

2. Phenotype Picker. Viewers can select a new phenotype 
from a list of 1000 ImageNet classes. After picking a new 
phenotype value, each tile texture on the grid updates with a 
new image class, while the underlying genomes of each tile 
remain the same. This allows viewers to quickly generate 
entirely new sets of images that retain the underlying 
population and layout of the generated images (Fig. 5). 

3. Playback Toggle. Tapping the playback toggle starts and 
stops auto-evolve mode (Fig. 6). When enabled, auto-evolve 
mode destroys the least fit tiles, then crossbreeds the most fit 

tiles found on each island over a specified number of 
evolutionary rounds. 

4. Options Menu. The options menu includes parameters for 
adjusting auto-evolve mode. The Growth Count parameter 
affects the number of tiles to add to each island in each 
evolutionary round, while the Death Count parameter 
determines the number of unfit tiles to remove from each 
island in every auto evolving round. When auto-merge is 
enabled, auto-evolve mode will also permit the automatic 
placement of tiles that perform an Island Joining operation. 
Finally, the menu also includes controls for adjusting the 
mutation radius, prototype debug options, and a Reset Map 
button that removes all tiles from the grid. 

4.3 Demonstration 
In Fig. 7 and the included reference video, we demonstrate the 
gamut of capabilities our EvoIsland framework provides through 
an HCI toolkit demonstration [23] of EvoIsland Touch. The 
example highlights the unique spatial subpopulation management 
workflows present in the EvoIsland framework and reveals how 
the system supports the interactive simultaneous search of 
multiple areas of the BigGAN latent design space. In addition to 
system screenshots, three additional phenotype images are 
displayed to the right of each frame to communicate changes more 
clearly in the evolving population. 

Figure 4: EvoIsland Touch Genome Editor. !e viewer 
opens, scrubs, then taps on genome trait #123 (A). As 
they drag their finger along the middle horizontal bar, 
the phenotype view above reflects the changes (B). 

 

Figure 5: Phenotype Picker. A$er evolving images of 
baseballs (le$) the viewer uses the Phenotype Picker to 
change the image class of the results to tennis balls. 

 

Figure 6: Auto-Evolve Mode in EvoIsland Touch. A Growth Count of 2 quickly increases the number of tiles in each 
island (above). Death Count set to 2 shrinks the islands rapidly by removing unfit results from each island (below). 
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Figure 7: A demonstration of a pet shop website owner, Pete, evolving a guinea pig image in our BigGAN EvoIsland 
Touch application. 
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5 COMPARISON WITH EXISTING SYSTEMS 
We compare our EvoIsland Framework, as implemented through 
EvoIsland Touch, to common interactive evolutionary interfaces 
present in published systems. For a more direct comparison, we 
also developed a complementary twelve tile grid-style interface 
that resembles these common approaches [19] for the underlying 
BigGAN evolutionary system present in EvoIsland Touch (Fig. 8). 
In the grid interface, viewers may adjust the phenotype ImageNet 
class of the genome, change the mutation radius of the 
evolutionary algorithm, and click to highlight preferred designs 
before clicking the Next Round button to generate new results. 
Unlike our EvoIsland system, however, all parent values provided 
to the crossover+mutation algorithm have an equal influence on 
generated genomes, regardless of their spatial position on the grid. 
After exploring variations of phenotypes in the systems and 
guiding the networks towards target designs over hundreds of 
sessions, we contrast how interactions with evolving populations 
in EvoIsland differ from traditional grid-based interfaces. 
Evolving Subpopulations. Evolutionary interfaces commonly 
support the ability to evolve a single global population towards a 
goal. After viewers select their preferred candidates in grid-style 
interfaces [5], or position phenotypes in the fitness zone [21] 
framework, a new generation replaces the entire population in the 
scene (for example, by fitness-proportionate selection). While the 
PETRI system supports multiple simultaneously evolving 
populations [26], the initial exploration only included nine 
physical tangible nodes, limiting subpopulation explorations at 
larger scales. EvoIsland supports the evolution of multiple larger 
subpopulations using spatial grouping techniques as viewers add 
and remove phenotype tiles from the grid. In our system, 
subpopulations can be quickly combined, split into multiple 
groups, or kept isolated throughout. In our experience with 
evolving BigGAN populations, we found having multiple 
subpopulations in EvoIsland enables the exploration of many 
distinct search spaces simultaneously. This provides additional 
precision over the combination of phenotypes from differing 
search areas. EvoIsland Touch further encourages subpopulation 
management with a variety of selection mode options for the 
positioning, duplication, and consolidation of disjoint tiles into 
new formations. Meanwhile, evolving BigGAN images via the 
traditional grid-style interface often led to each evolutionary 
round presenting results from a similar search space within a local 
minimum. While algorithmic adjustments and additional 

mutation controls can lead to wider search space explorations in 
each round, standard grid-style selection does not afford the same 
level of fine-tuned subpopulation control present in EvoIsland. 
Proxemic Evolution. Although fitness zone systems [21] 
prompt viewers to interactively position phenotypes to rank their 
fitness, EvoIsland’s spatially-aware evolution of tiles provides 
deeper hyperinteractive [4] control over crossover combinations. 
When a tile is added to an island, genome values in directly 
neighboring tiles have a higher probability of recombination 
within the crossover+mutation function. With the proxemic 
evolutionary approach in EvoIsland, viewers can spatially select 
genomes for breeding. It is also possible to perform side-by-side 
comparisons of identical evolving subpopulations through the 
duplication functions in EvoIsland Touch. This high level of 
control in EvoIsland contrasts starkly with our grid system, as the 
grid lacks an interface for directly controlling the precise 
crossover combination of selected parents in each evolutionary 
round. While other grid-style systems have been supplemented 
with user interface elements for ranking the fitness of results, 
such as star rating controls [5] or sliders [34], they traditionally 
do not have a means for directly selecting crossovers within their 
presented populations. When evolving BigGAN images in the 
grid-style system, it is challenging to predict and review parent-
child relationships across evolutionary rounds. 
History of Evolutionary Paths Taken. Some systems enable 
viewers to reflect on and revisit histories of evolutionary actions. 
MusicCube, for example, provides historical access to previous 
selection choices by displaying the system’s entire search space 
and highlighting viewer song rankings on a scatterplot [31]. 
Meanwhile, the PicBreeder system contains a separate view that 
visualizes evolved nodes in a graph [32]. The visualization of 
evolutionary histories using EvoVersion’s stacked ring system 
also includes a method to review previous selections performed in 
grid-style or fitness zone interfaces [20]. EvoIsland systems 
provide an implicit history to past evolutionary operations by 
retaining selected results on a grid (although removed tiles cannot 
be reviewed). Rather than visualizing previous evolutionary 
operations in a separate view, EvoIsland displays selection 
histories within the evolutionary interface itself. The approach 
supports interactions with earlier stages of evolution and 
promotes the combination of results from multiple search spaces 
as viewers reposition tiles. When reviewing the screenshot of our 
traditional BigGAN grid-style interface in Fig. 8, it is challenging 
to approximate how far along the viewer is in the evolutionary 
process. The static layout and number of presented results in the 
grid remains constant throughout. In EvoIsland, the depth of 
explored search spaces is implicitly communicated as the number 
of tiles often increases over time. 

6 DISCUSSION 
The affordances present in the EvoIsland platform permit a 
variety of unique interaction strategies for directing evolutionary 
processes. In our discussion, we highlight interaction strategies 
that support population explorations in EvoIsland and discuss 
potential opportunities for future development. 

Figure 8: Evolving BigGAN sweatshirt images with our 
grid interface (le$) and EvoIsland Touch (right). 
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6.1 Evolution Patterns 
Using EvoIsland Touch, we found several unique interaction 
patterns that can support search space explorations including: 

Branching. Iteratively positioning 
mutating tiles outwards in two or more 
directions diverges solutions from a starting 
position. Adding branches provides a rapid 
approach for exploring multiple possible 
paths of evolution simultaneously. 
Trees. Recursively branching islands 
reveals a tree pattern with increasing 
variation at deeper levels. Trees provide an 
organized approach for exploring repeated 
child parent relationships. 
Spirals.  Spiralling outward from a center 
tile results in a cluster of related tiles with 
increasing variation from originals. Creating 
spirals provides a fast and space-efficient 
mechanism for exploring possible variations 
based on a small number of parents. 
Gradients. Gradually adding repeating 
lines of tiles increases variation from the 
starting corner of the shape towards its 
adjacent corner. Gradient formations 
provide a compact mechanism for exploring 
compounding variations along two axes.  

6.2 Subpopulation Management 
Continuous Evolution. Unlike interactive evolutionary systems 
that present a set number of solutions in rigid ranked rounds of 
phenotype selection tasks, interacting with populations in 
EvoIsland is a continuous process that consists of adding and 
removing tiles on a hexagonal grid at will. Viewers can display an 
unbounded number of phenotypes and quickly revisit earlier 
generated solutions. While many solutions are displayed 
simultaneously, the coherent mental model of a grid map 
encourages viewers to choose how to spatially situate results and 
trace their progress. Through an adjustable viewport, viewers can 
also pan and zoom to focus on smaller segments of the grid. 
Locking Controls. Some evolutionary systems include locking 
controls to prevent parts of a genome from evolving any further. 
In CG-GAN [38], locking controls prevent certain facial features 
from drastically changing as the generative adversarial network 
inputs evolve. In our EvoIsland Touch application, viewers can 
spatially place designs aside to save their state and duplicate 
preferred tile designs to increase their influence on the grid. In 
future versions of the system, additional locking mechanisms may 
be helpful for providing fine-tuned evolution or for preventing the 
removal of some tiles from the grid entirely. 
Scaling to Larger Populations. Scaling the grid in EvoIsland 
Touch reveals different quantities and levels of phenotype details. 
From an overview perspective viewers can observe larger trends 
in populations, then zoom in for a closer examination of 
phenotypes. This grid scaling could be pushed even further to 
support dot-map style visualizations [37] of much larger numbers 

of phenotypes. While EvoIsland Touch includes multi-selection 
capabilities, multi-touch data visualization interaction techniques 
[30] could support larger populations.  

6.3 Generalizable Design 
The EvoIsland Framework can extend into computing mediums 
beyond the 2D touch interface in EvoIsland Touch. We also 
created an augmented reality (AR) iOS app where viewers can tap 
to add and remove evolutionary tiles on real-world surfaces to 
evolve parametric 3D models (Fig. 9). The prototype demonstrates 
the framework operating in a 3D situated spatial layout. As a 
platform-agnostic framework, we hope to see EvoIsland-inspired 
systems on a wider range of computing modalities in the future. 

 

Figure 9: EvoIsland AR for parametric 3D design. 

6.4 Evaluating Creativity Systems 
Evaluating computationally creative systems is touted as ‘Grand 
Challenge’ in the field [6] as the definition of creativity is open to 
interpretation. Addressing this challenge, SPECS [18] proposes a 
three-step process where researchers to adopt a definition of 
creativity for their system, then derive experiments from the 
definition for evaluation. While we compare EvoIsland to existing 
approaches, a creative systems evaluation could reveal and better 
quantify additional characteristics about the EvoIsland system. 

7 CONCLUSION 
Through the spatial positioning of phenotype tiles, the EvoIsland 
Framework includes an expressive vocabulary of subpopulation 
management techniques for exploring evolutionary systems. As 
viewers repeatedly perform island operations, isolated landmasses 
on a grid produce disparate evolutionary results.  EvoIsland Touch 
exemplifies the potential for production systems to further build 
upon the framework, with multi-selection controls and rapid 
evolution options for BigGAN images. Nonetheless, we suspect 
that branching, tree, spiral, and gradient patterns are only 
scratching the surface of how the framework can guide evolving 
populations. We finally encourage the community to consider 
adopting EvoIsland over traditional interfaces that can stifle the 
creative exploration of evolving populations. 
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