
EvoIsland: Interactive Evolution via an Island-Inspired Spatial
User Interface Framework

Alexander Ivanov
University of Calgary
aaivanov@ucalgary.ca

Wesley Wille!
University of Calgary

wesley.wille!@ucalgary.ca

Christian Jacob
University of Calgary
cjacob@ucalgary.ca

ABSTRACT
We present EvoIsland, a scalable interactive evolutionary user
interface framework inspired by the spatially isolated land masses
seen on Earth. Our generalizable interaction system encourages
creators to spatially explore a wide range of design possibilities
through the combination, separation, and rearrangement of
hexagonal tiles on a grid. As these tiles are grouped into island-
like clusters, localized populations of designs form through an
underlying evolutionary system. The interactions that take place
within EvoIsland provide content creators with new ways to
shape, display and assess populations in evolutionary systems that
produce a wide range of solutions with visual phenotype outputs.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms; Neural
networks; • Human-centered computing → Visualization.

KEYWORDS
Interactive Evolutionary Systems, User Interfaces, Visualization.

ACM Reference format:
Alexander Ivanov, Wesley Wille!, and Christian Jacob. In Genetic and
Evolutionary Computation Conference (GECCO ’22), July 9-13, 2022, Boston,
MA, USA. ACM, New York, NY, USA, 8 pages.
h!ps://doi.org/10.1145/3512290.3528722

1 INTRODUCTION
Over the centuries, as life flourished across the crust of the Earth,
species that were unfit for their environment were eliminated
through the process of evolution [11]. Meanwhile, shifting
tectonic plates and fluctuating sea levels have caused the
geographic boarders of land masses to change, sparking new
interactions between distinct groups of species. With these
geological and evolutionary processes in mind, we have created
an interactive system for guiding evolutionary design. Our

EvoIsland system, inspired by Earth’s tectonic events, supports
the rapid exploration and generation of design paths across a large
search space of multiple branching solutions. Unlike common
existing evolutionary user interface approaches [1, 38], EvoIsland
enables viewers to continuously regroup and evolve multiple
subpopulations of spatially distinct solutions through platform
agnostic spatial interactions. To demonstrate the unique
characteristics of our framework, we present a prototype
multitouch application that employs the EvoIsland framework
design to evolve the input vectors of a BigGAN generative
adversarial network (GAN) [2]. We then compare our framework
to existing evolutionary systems [17, 21, 35] and reflect on how
EvoIsland supports the rapid interactive generation of multiple
subpopulations of solutions at different scales.

2 INTERACTIVE EVOLUTIONARY SYSTEMS
Through selective breeding processes and the application of
fitness optimization functions, evolutionary algorithms build
upon Darwinist principles to iteratively generate solutions [15].
Evolutionary algorithms have demonstrated a capacity to
generate a diverse set of solutions to design problems [25].
However, some tasks – such as generating works of art – have
much more loosely defined goals which can be challenging to
describe, leading to an underlying alignment problem between
generative systems and humans [7]. Unlike purely computer
generated approaches, interactive evolutionary systems prompt a
human advisor to guide the generative process [13]. Through an
implemented user interface, designers iteratively rank how fit
each result is amongst a population in different evolutionary
rounds, while an underlying evolutionary algorithm evolves the
ranked results to generate new solutions over time. Some
evolutionary interfaces have been shown to cause significant user
fatigue due to the use of repetitive evaluation tasks [33]. Reducing
the number of interactions required by interactive systems can
reduce this user fatigue, but often limits the number of generated
solutions presented at a given time.

2.1 User Interfaces for Evolutionary Systems
A common evolutionary user interface is the grid selection design,
which is present across a variety of interactive systems, such as
GAN input evolution [1, 38] and generative race track paths for
video games [5] . The grid approach displays a 2D matrix of results
on screen and prompts viewers to iteratively select one or more
preferred solutions in distinct evolutionary rounds using a variety

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.
GECCO ’22, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9237-2/22/07. . . $15.00
https://doi.org/10.1145/3512290.3528722

GECCO ’22, July 9-13, 2022, Boston, MA, USA A. Ivanov, W. Willett, C. Jacob

2

of scoring systems [17, 22, 28]. While grid-style systems can
display many results simultaneously, user fatigue can increase
with the number of ranking tasks required in each evolutionary
round [33]. Due to this constraint, grid-style systems typically
display fewer than 20 solutions at a time. In the fitness zone
framework [21], viewers drag and position generated solutions
into different spatial regions on screen in consecutive
evolutionary rounds to rank their fitness. These regions may have
discrete fitness values or include a continuous range of values that
change when phenotypes are positioned along an axis. Viewers
using tournament evaluation interfaces select preferred evolved
solutions in a perfect binary tree of branching rounds [35]. As
deeper tree depths are generated, filtered solutions compete in
“quarter final” rounds, similar to how athletes play a sports match.

As an alternative approach for shaping the evolutionary
paths of evolving agents, Mammen & Jacob invited designers to
grow swarm data like a gardener by spatially adding nutrients to
continuously sprouting designs within an evolving 3D scene [24].
The gardening analogy masks the complex operations taking
place within the system’s underlying code and breaks free from
the ridged rounds used in traditional evaluation interfaces. In a
unique tangible approach, the novel PETRI system uses a number
of small cylindrical smart devices with phenotypes displayed on
their tops [26]. By shaking the tangible units, colliding multiple
devices, and performing other gestures, viewers can physically
control solutions generated by the evolutionary system. While
only nine PETRI prototype nodes were developed, the authors
speculate that the approach may be particularly helpful for
evolving separate subpopulations of generated solutions.
Hyperinteractive evolutionary computation systems can invoke a
more positive user experience, while producing higher quality
designs by putting individual operations of an evolutionary
system in the control of the user [4]. These systems have a
reduced reliance on automated underlying functions and provide
more creative control over the generation of results when
compared to pure evaluation task-based systems.

2.2 Visualizing Evolutionary Data
With clearly traceable histories of evolving solutions and
consistent genome encodings, evolutionary systems are
particularly well suited for exploring new visualization
techniques. In an early investigation of evolutionary data
visualization best practices, Pohlheim compared a variety of
simple visualization techniques for a range of datasets [29],
allowing viewers to review the path of an evolutionary algorithm
over time. New approaches for visualizing tree structures that
occur in evolutionary algorithms have also been developed by
Daida et al [10], condensing the evolution of large populations
into a small multiples [36] style grid. Taking design cues from
desktop media library interfaces, EvoShelf [12] encourages
viewers to organize and scrub through thousands of individual
phenotype images of evolved swarm data by moving a computer
cursor from left to right. Additionally, EvoShelf displays the full
evolutionary histories of the data through the use of star plots and
a ThemeRiver visualization technique [16]. This overview+detail
[8] approach to EvoShelf’s user interface provides viewers with

the ability to simultaneously examine datasets at multiple levels
of granularity. More recently ELICIT [9], a general-purpose tool
for exploring evolutionary algorithms, introduces a variety of
techniques for visualizing the lineage of evolving solutions.
Entering immersive environments, EvoVersion [20] uses stacks of
3D rings to visually encode evolutionary sessions, generations,
and individual phenotype representations of the data itself. While
retroactively visualizing generations of evolutionary populations
can help viewers build an understanding of how a solution is
achieved, interactive evolutionary systems often require viewers
to continuously assess the current state of the evolutionary
populations presented on screen. In developing our EvoIsland
framework, we set out to incorporate visualization techniques
into the interactive evolutionary process itself to allow viewers to
quickly revisit and reflect on their previous selection choices as
they evolve generated designs.

3 EVOISLAND FRAMEWORK DESIGN
The EvoIsland Framework features a generalizable interactive
system of operators that support the rapid exploration of a wide
range of outputs through spatial subpopulation management at
different scales. In this next section, we provide an overview of
the framework design and outline the Island Operators that serve
as the system’s foundation.

3.1 Overview
EvoIsland is a generalizable interactive design framework that
enables viewers to rapidly create, divide, grow, and combine
subpopulations of evolutionary data. The system supports both
fine-tuned manipulation of individual genomes and higher-scale
directed evolution across evolutionary populations using a
hyperinteractive approach [4]. As viewers interact with
evolutionary data, EvoIsland provides a visual overview of
individual genome states and groupings of similar solution
clusters to communicate underlying evolutionary processes.
The EvoIsland framework user interface is comprised of two
primary elements: an evolutionary grid that snaps elements into
a hexagonal pattern and evolutionary tiles that are placed onto the
grid itself (Fig. 1). Each tile in the system contains a genome
generated by an evolutionary algorithm and displays a visual
phenotype representation of the genome. As viewers position tiles
onto the grid, they can interactively and iteratively shape
generated populations. Upon placement, a new genome is
generated for the tile, taking into account the proxemic position
and distances of neighboring tile genomes using a von Neumann
neighborhood search [3]. Unlike four-sided rectangular grid
systems, hexagonal grids support a search across six neighboring
sides, providing viewers with more flexibility for generating
related solutions. After adding multiple evolutionary tiles to the
grid, interconnected island groupings begin to form that visually
communicate distinct evolving subpopulations of solutions. The
tile positions within the islands are then tracked and updated by
the EvoIsland system as interactions take place, enabling unique
operators that provide a means for directing results generated by
an underlying evolutionary algorithm.

EvoIsland GECCO’22, July 9-13, 2022, Boston, Massachusetts, USA

 3

3.2 Island Operators
Principal island operations performed on the EvoIsland grid alter
relationships between distinct subpopulation groupings of tiles. In
the EvoIsland Framework, we refer to these subpopulation
groupings of tiles and the embedded genomes they encode as
Islands. To communicate these operations, we refer to an example
evolutionary system that evolves basic colors (Fig. 1) (for more
details on implemented EvoIsland algorithms see Appx. A.1-3).
The operations supported by the EvoIsland system include:
1. Island Creation. An island is created when the viewer adds

an evolutionary tile to the grid and the new tile does not have
a neighboring tile. The system generates a new genome for
the tile that serves as a starting point for the subpopulation.

2. Island Growth. The growth of an island takes place when a
tile is placed next to a single existing island formation. When
growth occurs, the system’s crossover+mutation function
uses the relative distances of existing tiles on the island to
generate a spatially aware genome for the new tile.

3. Island Joining. When the viewer adds a tile to the grid and
two or more previously disconnected islands are connected,
the populations of both islands combine to form a new, larger
island. The crossover+mutation function uses the relative
distances of existing tiles on both islands to generate a
unifying genome for the new tile.

4. Island Separation. An island is separated when the viewer
removes a tile that solely connects two parts of a larger
island, splitting an island into multiple subpopulations. After
a separation occurs, the two islands follow different
evolutionary paths that stem from the isolated populations.

5. Island Shrinking. The shrinking of an island occurs when
a tile is removed from an island and the remaining tiles in the
formation continue to be interconnected after the removal.

6. Island Destruction. An island is destroyed when the last
remaining tile in an island formation is removed.

4 EVOISLAND TOUCH
Employing the EvoIsland framework, we developed EvoIsland
Touch (Fig. 2). The interactive evolutionary iPad app supports the
above Island Operators through multi-touch gestures and builds
upon the framework with additional support for rapid
subpopulation editing and selection features.

4.1 System Architecture
While EvoIsland Touch can be customized to support different
genetic algorithms that produce visual outputs, to demonstrate its
capabilities we developed an evolutionary system that evolves the
input vectors of a BigGAN network [2]. BigGAN builds upon
image synthesis techniques [27] to generate a diverse range of
images across 1000 ImageNet classes [14]. Its input is comprised
of a one-hot vector to specify the class of image to generate, a noise
vector for activating different image class compositions, and a
truncation value which modifies the result variation. While these
networks can produce millions of output images, it can be
challenging to predict how changing the inputs of the model
affects generated images. Our EvoIsland framework seeks to
improve interactions with such complex systems by using a
human-in-the-loop approach that supports viewers as they search
through large solution spaces.

Figure 1: Underlying Island Operators in the EvoIsland Framework alter relationships between evolved subpopulations
through the addition and removal of tiles on a grid.

Figure 2: EvoIsland Touch System Architecture.

GECCO ’22, July 9-13, 2022, Boston, MA, USA A. Ivanov, W. Willett, C. Jacob

4

BigGAN Genome. To generate a wide range of images, the
BigGAN neural network utilizes an input noise vector comprised
of 128 unbounded float values. In EvoIsland Touch, this noise
vector is embedded within the genome present in each
evolutionary tile and is evolved through the interactive interface.

BigGAN Phenotype. In our EvoIsland Touch app, the phenotype
of generated images corresponds to the class vector of the
BigGAN model and can be changed to update the tile views.

BigGAN Crossover + Mutation. This BigGAN example for
EvoIsland Touch uses CrossoverMutate as a crossover+mutation
function that receives three inputs (Appx. A.1). The first input is
a 3D parent array that contains all genomes in the existing island
formation and their relative distances to the newly added genome.
The second input is the mutation radius value between 0 and 1.
Finally, the third input is a gradient value between 0 and 1. When
the viewer creates a new island in the user interface, the function
receives an empty parent array, then generates a new genome
with random float values between 0 and 1 as a starting point for
the evolving population. While the BigGAN neural network
accepts input values outside of this range, values from the [0,1]
interval produce images with relatively minimal artifacts. When
the viewer adds to an existing island formation, the function
selects genome values for the tile from the set of existing values
on the island. Depending on the gradient value (Appx. A.2),
genomes located within directly neighboring tiles have a higher
probability of their values being selected for the crossover
operation than tiles at further distances (Appx. A.2). We set this
gradient value to 0.75, causing the genome values present in direct
neighbor tiles to have a 75% probability of selection for the
crossover function, while the tiles at further tile distances have
increasingly less likelihoods of selection. Each genome value is
then offset by a random amount within the mutation radius.

BigGAN Selection. Our BigGAN evolutionary system ranks the
fitness of each generated design by its similarity to other genomes
in the island subpopulation such that more unique genomes are
favored (Appx. A.3). The FindLeastFit algorithm calculates an
average noise vector across the genomes of all tiles on the island.
It then determines the fitness of each tile on the island by taking
the sum difference between the tile’s genome noise vector values
and the average noise vector values. Finally, the function returns
the least fit genomes, based on this calculated fitness, for removal
from the system. With this approach, as islands evolve over time
in the app’s auto-evolve mode (Fig. 6), the generated tiles on each
island diverge towards an appearance that is less homogenous.

4.2 User Interface
The EvoIsland Touch (Fig. 2) user interface includes two primary
components, an interactive evolutionary scene for directly
manipulating evolutionary tiles and an upper toolbar for
performing various genetic actions on the scene. Standard pinch
to zoom and two finger pan gestures are present throughout the
evolutionary scene for navigation and popover menus include
additional operators for subpopulation interactions.

Evolutionary Scene. Here viewers have access to all tile
operators outlined in the EvoIsland Framework and additional
capabilities for more precise control of evolutionary
subpopulations. Viewers can add, duplicate, select, edit, and
remove evolutionary tiles to create and destroy islands. Tiles

placed throughout the scene snap into formation on the
evolutionary grid, visually indicated by light grey dots. Tapping
on an empty space adds a new evolutionary tile to the scene and
tapping on an existing tile removes it. Tiles may also be relocated
to other grid positions by dragging. When a tile is added, an
evolutionary algorithm generates a genome for the tile with a
crossover+mutation algorithm, and then displays a visual
phenotype image as its texture. Meanwhile, a long press on a tile
presents a popover menu with the following options:
1. Select. Tapping this option activates Selection Mode (Fig. 3),

where viewers can tap to select multiple tiles and drag to
relocate them. When tiles are selected, they hover above the
main grid for positioning and snap to the closest available
location on the grid upon deselection. A lower selection
toolbar provides the ability to Consolidate the selected tiles
into a single clustered island formation, Duplicate the
selected tiles onto the main grid, or Remove the selected tiles
from the scene entirely.

2. Duplicate. Choosing this option also enters Selection Mode,
but instantly duplicates the selected tile onto a nearby vacant
space in the main evolutionary grid.

3. Edit. Picking this option presents the Genome Editor window
for adjusting the noise vector values of a selected genome
directly (Fig. 4). The top half of the window displays the
current visual phenotype representation of the tile, while
selecting and editing the genome values is reserved for the
bottom half of the window. Viewers can drag the large
horizontal slider bar in the center of the window to update
the value of the currently selected genome trait index or
scrub their finger along miniature vertical bars on the bottom
portion of the screen to select a different parameter to adjust.
Updates to the genome are then reflected in the upper
phenotype view.

Figure 3: EvoIsland Touch Selection Mode. The viewer
taps to select 5 tiles (A) and drags them to a new position
(B). The viewer then taps Consolidate to merge the tiles
into a unified island formation (C) and taps Duplicate
twice to place copies of the selection onto the grid (D).

EvoIsland GECCO’22, July 9-13, 2022, Boston, Massachusetts, USA

 5

Toolbar. The upper toolbar provides access to a variety of
additional tile manipulation actions through popover menus:

1. Add Tile Menu. This menu contains two special tiles: a
grower tile that automatically adds a set number of tiles to a
connected island, and a destroyer tile that removes a specified
number of least fit tiles from an island. Unlike many of the
other features available in the toolbar, these actions operate
on the population of a particular island, rather than affecting
all islands on the grid.

2. Phenotype Picker. Viewers can select a new phenotype
from a list of 1000 ImageNet classes. After picking a new
phenotype value, each tile texture on the grid updates with a
new image class, while the underlying genomes of each tile
remain the same. This allows viewers to quickly generate
entirely new sets of images that retain the underlying
population and layout of the generated images (Fig. 5).

3. Playback Toggle. Tapping the playback toggle starts and
stops auto-evolve mode (Fig. 6). When enabled, auto-evolve
mode destroys the least fit tiles, then crossbreeds the most fit

tiles found on each island over a specified number of
evolutionary rounds.

4. Options Menu. The options menu includes parameters for
adjusting auto-evolve mode. The Growth Count parameter
affects the number of tiles to add to each island in each
evolutionary round, while the Death Count parameter
determines the number of unfit tiles to remove from each
island in every auto evolving round. When auto-merge is
enabled, auto-evolve mode will also permit the automatic
placement of tiles that perform an Island Joining operation.
Finally, the menu also includes controls for adjusting the
mutation radius, prototype debug options, and a Reset Map
button that removes all tiles from the grid.

4.3 Demonstration
In Fig. 7 and the included reference video, we demonstrate the
gamut of capabilities our EvoIsland framework provides through
an HCI toolkit demonstration [23] of EvoIsland Touch. The
example highlights the unique spatial subpopulation management
workflows present in the EvoIsland framework and reveals how
the system supports the interactive simultaneous search of
multiple areas of the BigGAN latent design space. In addition to
system screenshots, three additional phenotype images are
displayed to the right of each frame to communicate changes more
clearly in the evolving population.

Figure 4: EvoIsland Touch Genome Editor. !e viewer
opens, scrubs, then taps on genome trait #123 (A). As
they drag their finger along the middle horizontal bar,
the phenotype view above reflects the changes (B).

Figure 5: Phenotype Picker. A$er evolving images of
baseballs (le$) the viewer uses the Phenotype Picker to
change the image class of the results to tennis balls.

Figure 6: Auto-Evolve Mode in EvoIsland Touch. A Growth Count of 2 quickly increases the number of tiles in each
island (above). Death Count set to 2 shrinks the islands rapidly by removing unfit results from each island (below).

GECCO ’22, July 9-13, 2022, Boston, MA, USA A. Ivanov, W. Willett, C. Jacob

6

Figure 7: A demonstration of a pet shop website owner, Pete, evolving a guinea pig image in our BigGAN EvoIsland
Touch application.

EvoIsland GECCO’22, July 9-13, 2022, Boston, Massachusetts, USA

 7

5 COMPARISON WITH EXISTING SYSTEMS
We compare our EvoIsland Framework, as implemented through
EvoIsland Touch, to common interactive evolutionary interfaces
present in published systems. For a more direct comparison, we
also developed a complementary twelve tile grid-style interface
that resembles these common approaches [19] for the underlying
BigGAN evolutionary system present in EvoIsland Touch (Fig. 8).
In the grid interface, viewers may adjust the phenotype ImageNet
class of the genome, change the mutation radius of the
evolutionary algorithm, and click to highlight preferred designs
before clicking the Next Round button to generate new results.
Unlike our EvoIsland system, however, all parent values provided
to the crossover+mutation algorithm have an equal influence on
generated genomes, regardless of their spatial position on the grid.
After exploring variations of phenotypes in the systems and
guiding the networks towards target designs over hundreds of
sessions, we contrast how interactions with evolving populations
in EvoIsland differ from traditional grid-based interfaces.
Evolving Subpopulations. Evolutionary interfaces commonly
support the ability to evolve a single global population towards a
goal. After viewers select their preferred candidates in grid-style
interfaces [5], or position phenotypes in the fitness zone [21]
framework, a new generation replaces the entire population in the
scene (for example, by fitness-proportionate selection). While the
PETRI system supports multiple simultaneously evolving
populations [26], the initial exploration only included nine
physical tangible nodes, limiting subpopulation explorations at
larger scales. EvoIsland supports the evolution of multiple larger
subpopulations using spatial grouping techniques as viewers add
and remove phenotype tiles from the grid. In our system,
subpopulations can be quickly combined, split into multiple
groups, or kept isolated throughout. In our experience with
evolving BigGAN populations, we found having multiple
subpopulations in EvoIsland enables the exploration of many
distinct search spaces simultaneously. This provides additional
precision over the combination of phenotypes from differing
search areas. EvoIsland Touch further encourages subpopulation
management with a variety of selection mode options for the
positioning, duplication, and consolidation of disjoint tiles into
new formations. Meanwhile, evolving BigGAN images via the
traditional grid-style interface often led to each evolutionary
round presenting results from a similar search space within a local
minimum. While algorithmic adjustments and additional

mutation controls can lead to wider search space explorations in
each round, standard grid-style selection does not afford the same
level of fine-tuned subpopulation control present in EvoIsland.
Proxemic Evolution. Although fitness zone systems [21]
prompt viewers to interactively position phenotypes to rank their
fitness, EvoIsland’s spatially-aware evolution of tiles provides
deeper hyperinteractive [4] control over crossover combinations.
When a tile is added to an island, genome values in directly
neighboring tiles have a higher probability of recombination
within the crossover+mutation function. With the proxemic
evolutionary approach in EvoIsland, viewers can spatially select
genomes for breeding. It is also possible to perform side-by-side
comparisons of identical evolving subpopulations through the
duplication functions in EvoIsland Touch. This high level of
control in EvoIsland contrasts starkly with our grid system, as the
grid lacks an interface for directly controlling the precise
crossover combination of selected parents in each evolutionary
round. While other grid-style systems have been supplemented
with user interface elements for ranking the fitness of results,
such as star rating controls [5] or sliders [34], they traditionally
do not have a means for directly selecting crossovers within their
presented populations. When evolving BigGAN images in the
grid-style system, it is challenging to predict and review parent-
child relationships across evolutionary rounds.
History of Evolutionary Paths Taken. Some systems enable
viewers to reflect on and revisit histories of evolutionary actions.
MusicCube, for example, provides historical access to previous
selection choices by displaying the system’s entire search space
and highlighting viewer song rankings on a scatterplot [31].
Meanwhile, the PicBreeder system contains a separate view that
visualizes evolved nodes in a graph [32]. The visualization of
evolutionary histories using EvoVersion’s stacked ring system
also includes a method to review previous selections performed in
grid-style or fitness zone interfaces [20]. EvoIsland systems
provide an implicit history to past evolutionary operations by
retaining selected results on a grid (although removed tiles cannot
be reviewed). Rather than visualizing previous evolutionary
operations in a separate view, EvoIsland displays selection
histories within the evolutionary interface itself. The approach
supports interactions with earlier stages of evolution and
promotes the combination of results from multiple search spaces
as viewers reposition tiles. When reviewing the screenshot of our
traditional BigGAN grid-style interface in Fig. 8, it is challenging
to approximate how far along the viewer is in the evolutionary
process. The static layout and number of presented results in the
grid remains constant throughout. In EvoIsland, the depth of
explored search spaces is implicitly communicated as the number
of tiles often increases over time.

6 DISCUSSION
The affordances present in the EvoIsland platform permit a
variety of unique interaction strategies for directing evolutionary
processes. In our discussion, we highlight interaction strategies
that support population explorations in EvoIsland and discuss
potential opportunities for future development.

Figure 8: Evolving BigGAN sweatshirt images with our
grid interface (le$) and EvoIsland Touch (right).

GECCO ’22, July 9-13, 2022, Boston, MA, USA A. Ivanov, W. Willett, C. Jacob

8

6.1 Evolution Patterns
Using EvoIsland Touch, we found several unique interaction
patterns that can support search space explorations including:

Branching. Iteratively positioning
mutating tiles outwards in two or more
directions diverges solutions from a starting
position. Adding branches provides a rapid
approach for exploring multiple possible
paths of evolution simultaneously.
Trees. Recursively branching islands
reveals a tree pattern with increasing
variation at deeper levels. Trees provide an
organized approach for exploring repeated
child parent relationships.
Spirals. Spiralling outward from a center
tile results in a cluster of related tiles with
increasing variation from originals. Creating
spirals provides a fast and space-efficient
mechanism for exploring possible variations
based on a small number of parents.
Gradients. Gradually adding repeating
lines of tiles increases variation from the
starting corner of the shape towards its
adjacent corner. Gradient formations
provide a compact mechanism for exploring
compounding variations along two axes.

6.2 Subpopulation Management
Continuous Evolution. Unlike interactive evolutionary systems
that present a set number of solutions in rigid ranked rounds of
phenotype selection tasks, interacting with populations in
EvoIsland is a continuous process that consists of adding and
removing tiles on a hexagonal grid at will. Viewers can display an
unbounded number of phenotypes and quickly revisit earlier
generated solutions. While many solutions are displayed
simultaneously, the coherent mental model of a grid map
encourages viewers to choose how to spatially situate results and
trace their progress. Through an adjustable viewport, viewers can
also pan and zoom to focus on smaller segments of the grid.
Locking Controls. Some evolutionary systems include locking
controls to prevent parts of a genome from evolving any further.
In CG-GAN [38], locking controls prevent certain facial features
from drastically changing as the generative adversarial network
inputs evolve. In our EvoIsland Touch application, viewers can
spatially place designs aside to save their state and duplicate
preferred tile designs to increase their influence on the grid. In
future versions of the system, additional locking mechanisms may
be helpful for providing fine-tuned evolution or for preventing the
removal of some tiles from the grid entirely.
Scaling to Larger Populations. Scaling the grid in EvoIsland
Touch reveals different quantities and levels of phenotype details.
From an overview perspective viewers can observe larger trends
in populations, then zoom in for a closer examination of
phenotypes. This grid scaling could be pushed even further to
support dot-map style visualizations [37] of much larger numbers

of phenotypes. While EvoIsland Touch includes multi-selection
capabilities, multi-touch data visualization interaction techniques
[30] could support larger populations.

6.3 Generalizable Design
The EvoIsland Framework can extend into computing mediums
beyond the 2D touch interface in EvoIsland Touch. We also
created an augmented reality (AR) iOS app where viewers can tap
to add and remove evolutionary tiles on real-world surfaces to
evolve parametric 3D models (Fig. 9). The prototype demonstrates
the framework operating in a 3D situated spatial layout. As a
platform-agnostic framework, we hope to see EvoIsland-inspired
systems on a wider range of computing modalities in the future.

Figure 9: EvoIsland AR for parametric 3D design.

6.4 Evaluating Creativity Systems
Evaluating computationally creative systems is touted as ‘Grand
Challenge’ in the field [6] as the definition of creativity is open to
interpretation. Addressing this challenge, SPECS [18] proposes a
three-step process where researchers to adopt a definition of
creativity for their system, then derive experiments from the
definition for evaluation. While we compare EvoIsland to existing
approaches, a creative systems evaluation could reveal and better
quantify additional characteristics about the EvoIsland system.

7 CONCLUSION
Through the spatial positioning of phenotype tiles, the EvoIsland
Framework includes an expressive vocabulary of subpopulation
management techniques for exploring evolutionary systems. As
viewers repeatedly perform island operations, isolated landmasses
on a grid produce disparate evolutionary results. EvoIsland Touch
exemplifies the potential for production systems to further build
upon the framework, with multi-selection controls and rapid
evolution options for BigGAN images. Nonetheless, we suspect
that branching, tree, spiral, and gradient patterns are only
scratching the surface of how the framework can guide evolving
populations. We finally encourage the community to consider
adopting EvoIsland over traditional interfaces that can stifle the
creative exploration of evolving populations.

ACKNOWLEDGMENTS
This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) [RGPIN-2016-
04564, RGPIN-2021-02492, RGPIN-2019-06267] and the Canada
Research Chairs Program.

EvoIsland GECCO’22, July 9-13, 2022, Boston, Massachusetts, USA

 9

REFERENCES
[1] Bontrager, P., Lin, W., Togelius, J. and Risi, S. 2018. Deep Interactive

Evolution. International Conference on Computational Intelligence in
Music, Sound, Art and Design (EvoMUSART EvoStar ’18). Springer, Cham.
(Jan. 2018), 267–282.

[2] Brock, A., Donahue, J. and Simonyan, K. 2019. Large Scale GAN Training
for High Fidelity Natural Image Synthesis. 7th International Conference on
Learning Representations (ICLR ’19). (May 2019).

[3] Burks, A. 1969. Von Neumann’s Self-Reproducing Automata. The
University of Michigan.

[4] Bush, B.J. and Sayama, H. 2011. Hyperinteractive Evolutionary
Computation. IEEE Transactions on Evolutionary Computation. 15, 3 (Jun.
2011), 424–433. DOI:https://doi.org/10.1109/TEVC.2010.2096539.

[5] Cardamone, L., Loiacono, D. and Lanzi, P.L. 2011. Interactive Evolution
for the Procedural Generation of Tracks in a High-End Racing Game.
Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’11). ACM Press. (2011), 395–402.
DOI:https://doi.org/10.1145/2001576.2001631.

[6] Cardoso, A., Veale, T. and Wiggins, G.A. 2009. Converging on the
divergent: The history (and future) of the international joint workshops
in computational creativity. AI magazine. 30, 3 (2009), 15.

[7] Christian, B. 2020. The Alignment Problem: Machine Learning and Human
Values. W. W. Norton & Company.

[8] Cockburn, A., Karlson, A. and Bederson, B.B. 2009. A Review of
Overview+Detail, Zooming, and Focus+Context Interfaces. ACM
Computing Surveys (CSUR ’09). Association for Computing Machinery. 41,
1 (Jan. 2009), 1–31. DOI:https://doi.org/10.1145/1456650.1456652.

[9] Cruz, A., Machado, P., Assunção, F. and Leitão, A. 2015. ELICIT:
Evolutionary Computation Visualization. Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary
Computation (GECCO Companion ’15). ACM Press. (2015), 949–956.
DOI:https://doi.org/10.1145/2739482.2768443.

[10] Daida, J.M., Hilss, A.M., Ward, D.J. and Long, S.L. 2005. Visualizing Tree
Structures in Genetic Programming. Genetic Programming and Evolvable
Machines. Springer. (Mar. 2005), 79–110.

[11] Darwin, C. 1964. On the Origin of Species: A Facsimile of the First Edition.
Harvard University Press.

[12] Davison, T., Von Mammen, S. and Jacob, C. 2010. EvoShelf: A System for
Managing and Exploring Evolutionary Data. International Conference on
Parallel Problem Solving from Nature (PPSN ’10). Springer. 6239 LNCS,
(2010), 310–319. DOI:https://doi.org/10.1007/978-3-642-15871-1_32.

[13] Dawkins, R. 2015. The Blind Watchmaker: Why the Evidence of Evolution
Reveals a Universe without Design. W. W. Norton & Company.

[14] Deng, J., Dong, W., Socher, R., Li, L.-J., Kai Li and Li Fei-Fei 2009.
ImageNet: A Large-Scale Hierarchical Image Database. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR ’09). IEEE. (Jun. 2009),
248–255. DOI:https://doi.org/10.1109/cvpr.2009.5206848.

[15] Fogel, L.J., Owens, A.J. and Walsh, M.J. 1966. Intelligent Decision-Making
Through a Simulation of Evolution. Behavioral Science. 11, 4 (1966), 253–
272. DOI:https://doi.org/https://doi.org/10.1002/bs.3830110403.

[16] Havre, S., Hetzler, B. and Nowell, L. 2000. ThemeRiver: Visualizing Theme
Changes Over Time. Proceedings of the IEEE Symposium on Information
Visualization (INFOVIS ’00). IEEE. (2000), 115–123.

 DOI:https://doi.org/10.1109/infvis.2000.885098.
[17] Hua, H. 2012. Planning Meets Self-Organization: Integrating Interactive

Evolutionary Computation with Cellular Automata for Urban Planning.
Frontiers of Architectural Research. Elsevier. 1, 4 (Dec. 2012), 400–404.
DOI:https://doi.org/10.1016/j.foar.2012.08.002.

[18] Jordanous, A. 2012. A standardised procedure for evaluating creative
systems: Computational creativity evaluation based on what it is to be
creative. Cognitive Computation. Springer. 4, 3 (2012), 246–279.

[19] Kelly, J. and Jacob, C. 2018. evoExplore: Multiscale Visualization of
Evolutionary Histories in Virtual Reality. International Conference on
Computational Intelligence in Music, Sound, Art and Design (EvoMUSART
EvoStar ’18). Springer, Cham. (2018), 112–127.

[20] Kelly, J. and Jacob, C. 2016. EvoVersion: Visualizing Evolutionary
Histories. 2016 IEEE Congress on Evolutionary Computation (CEC ’16).
IEEE. (Jul. 2016), 814–821. DOI:https://doi.org/10.1109/CEC.2016.7743875.

[21] Khemka, N., Hushlak, G. and Jacob, C. 2009. Interactive Evolutionary
Evaluation Through Spatial Partitioning of Fitness Zones. Workshops on
Applications of Evolutionary Computation (EvoWorkshops ’09). Springer.
5484 LNCS, (2009), 432–441. DOI:https://doi.org/10.1007/978-3-642-
01129-0_49.

[22] Kowaliw, T., Dorin, A. and McCormack, J. 2012. Promoting Creative
Design in Interactive Evolutionary Computation. IEEE Transactions on
Evolutionary Computation. IEEE. 16, 4 (Aug. 2012), 523–536.
DOI:https://doi.org/10.1109/TEVC.2011.2166764.

[23] Ledo, D., Houben, S., Vermeulen, J., Marquardt, N., Oehlberg, L. and
Greenberg, S. 2018. Evaluation Strategies for HCI Toolkit Research.
Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (CHI ’18). Association for Computing Machinery. (Apr. 2018), 1–
17. DOI:https://doi.org/10.1145/3173574.3173610.

[24] Von Mammen, S. and Jacob, C. 2007. Genetic Swarm Grammar
Programming: Ecological Breeding Like a Gardener. 2007 IEEE Congress
on Evolutionary Computation (CEC ’07). IEEE. (2007), 851–858.
DOI:https://doi.org/10.1109/CEC.2007.4424559.

[25] Miller, J., Job, D. and Vassilev, V. 2000. Principles in the Evolutionary
Design of Digital Circuits—Part II. Genetic Programming and Evolvable
Machines. Springer. 1, 3 (2000), 259–288.
DOI:https://doi.org/10.1023/A:1010066330916.

[26] Mitchell, T., Bennett, P., Madgwick, S., Davies, E. and Tew, P. 2016.
Tangible Interfaces for Interactive Evolutionary Computation.
Proceedings of the 2016 CHI Conference Extended Abstracts on Human
Factors in Computing Systems (CHI ’16). Association for Computing
Machinery. (May 2016), 2609–2616.

 DOI:https://doi.org/10.1145/2851581.2892405.
[27] Odena, A., Olah, C. and Shlens, J. 2017. Conditional Image Synthesis with

Auxiliary Classifier Gans. 34th International Conference on Machine
Learning (ICML ’17). PMLR. 6, (Oct. 2017), 4043–4055.

[28] Peng, H., Hu, H., Chao, F., Zhou, C. and Li, J. 2016. Autonomous Robotic
Choreography Creation via Semi-interactive Evolutionary Computation.
International Journal of Social Robotics. Springer. 8, 5 (Nov. 2016), 649–661.
DOI:https://doi.org/10.1007/s12369-016-0355-x.

[29] Pohlheim, H. 1999. Visualization of Evolutionary Algorithms - Set of
Standard Techniques and Multidimensional Visualization. Proceedings of
the 1st Annual Conference on Genetic and Evolutionary Computation
(GECCO ’99). ACM Press. (1999), 533–540.

[30] Sadana, R. and Stasko, J. 2016. Expanding Selection for Information
Visualization Systems on Tablet Devices. Proceedings of the 2016 ACM
International Conference on Interactive Surfaces and Spaces: Nature Meets
Interactive Surfaces (ISS ’16). ACM Press. (2016), 149–158.
DOI:https://doi.org/10.1145/2992154.2992157.

[31] Saito, Y. and Itoh, T. 2011. MusiCube: A Visual Music Eecommendation
System Featuring Interactive Evolutionary Computing. In the Proceedings
of the 2011 Visual Information Communication (VINCI ’11). ACM Press.
(New York, New York, USA, 2011), 1–6.

[32] Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A.,
Folsom-Kovarik, J.T. and Stanley, K.O. 2011. Picbreeder: A Case Study in
Collaborative Evolutionary Exploration of Design Space. Evolutionary
Computation. IEEE. 19, 3 (Sep. 2011), 373–403.

 DOI:https://doi.org/10.1162/EVCO_a_00030.
[33] Takagi, H. 2001. Interactive Evolutionary Computation: Fusion of the

Capabilities of EC Optimization and Human Evaluation. Proceedings of the
IEEE. 89, 9 (2001), 1275–1296. DOI:https://doi.org/10.1109/5.949485.

[34] Takenouchi, H., Tokumaru, M. and Muranaka, N. 2013. Interactive
Evolutionary Computation Using a Tabu Search Algorithm. IEICE
Transactions on Information and Systems. E96-D, 3 (2013), 673–680.
DOI:https://doi.org/10.1587/transinf.E96.D.673.

[35] Takenouchi, H., Tokumaru, M. and Muranaka, N. 2012. Performance
Evaluation of Interactive Evolutionary Computation with Tournament-
Style Evaluation. 2012 IEEE Congress on Evolutionary Computation (CEC
’12). IEEE. (Jun. 2012), 1–8.
DOI:https://doi.org/10.1109/CEC.2012.6256128.

[36] Tufte, E.R. 1990. Envisioning Information. Graphics Press.
[37] Turner, E. and Allen, J.P. 2010. Issues in Depicting Population Change

with Dot Maps. Cartography and Geographic Information Science. Taylor
& Francis. 37, 3 (Jan. 2010), 189–197.

 DOI:https://doi.org/10.1559/152304010792194921.
[38] Zaltron, N., Zurlo, L. and Risi, S. 2020. CG-GAN: An Interactive

Evolutionary GAN-Based Approach for Facial Composite Generation.
Proceedings of the 34th AAAI Conference on Artificial Intelligence (AAAI
’20). AAAI Press. 34, 03 (Apr. 2020), 2544–2551.
DOI:https://doi.org/10.1609/aaai.v34i03.5637.

	

	

