
Teachable Reality: Prototyping Tangible Augmented Reality with
Everyday Objects by Leveraging Interactive Machine Teaching

Kyzyl Monteiro
Weave Lab, IIIT-Delhi

New Delhi, India
University of Calgary

Calgary, Canada
kyzyl17296@iiitd.ac.in

Ritik Vatsal
Weave Lab, IIIT-Delhi

New Delhi, India
University of Calgary

Calgary, Canada
ritik19321@iiitd.ac.in

Neil Chulpongsatorn
University of Calgary

Calgary, Canada
thobthai.chulpongsat@ucalgary.ca

Aman Parnami
Weave Lab, IIIT-Delhi

New Delhi, India
aman@iiitd.ac.in

Ryo Suzuki
University of Calgary

Calgary, Canada
ryo.suzuki@ucalgary.ca

Figure 1: Teachable Reality is an augmented reality prototyping tool to create interactive tangible AR applications that can use
arbitrary everyday objects as user inputs. Some prototypes that can be created using Teachable Reality include: (A) An in-situ
tangible UI that shows that a pinching gesture can control the scale of the virtual content. (B) A smart home AR application that
displays a control panel when you look at the device. (C) A navigation system displays the next arrow showing the direction
based on the user’s current view. (D) An opportunistic AR controller - using a plate to steer and drive a virtual car. (E) An AR
interface that displays 3D origami instructions as a step is completed. (F) An AR Assistant interface that counts the number of
push-ups. (G) An intelligent Tangible AR interface that allows the rotation of a card to trigger a different layout. (H) An AR 3D
printing interface that enables previewing the print when the user places their hand on the 3D printer.

ABSTRACT
This paper introduces Teachable Reality, an augmented reality (AR)
prototyping tool for creating interactive tangible AR applications
with arbitrary everyday objects. Teachable Reality leverages vision-
based interactive machine teaching (e.g., Teachable Machine),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581449

which captures real-world interactions for AR prototyping. It iden-
tifies the user-defined tangible and gestural interactions using an
on-demand computer vision model. Based on this, the user can eas-
ily create functional AR prototypes without programming, enabled
by a trigger-action authoring interface. Therefore, our approach al-
lows the flexibility, customizability, and generalizability of tangible
AR applications that can address the limitation of current marker-
based approaches. We explore the design space and demonstrate
various AR prototypes, which include tangible and deformable in-
terfaces, context-aware assistants, and body-driven AR applications.
The results of our user study and expert interviews confirm that
our approach can lower the barrier to creating functional AR proto-
types while also allowing flexible and general-purpose prototyping
experiences.

https://doi.org/10.1145/3544548.3581449

CCS CONCEPTS
• Human-centered computing → Mixed / augmented reality.

KEYWORDS
Augmented Reality; Mixed Reality; Prototyping Tools; Tangible In-
teractions; EverydayObjects; InteractiveMachine Teaching; Human-
Centered Machine Learning;

ACM Reference Format:
Kyzyl Monteiro, Ritik Vatsal, Neil Chulpongsatorn, Aman Parnami, and Ryo
Suzuki. 2023. Teachable Reality: Prototyping Tangible Augmented Reality
with Everyday Objects by Leveraging Interactive Machine Teaching. In
Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (CHI ’23), April 23–28, 2023, Hamburg, Germany. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3544548.3581449

1 INTRODUCTION
Today, prototyping AR applications has become easier than ever
before, thanks to various commercial prototyping tools (e.g., A-
Frame [3], RealityComposer [38], Adobe Aero [36]) and research
projects (e.g., Pronto [59], ProtoAR [65], 360Proto [64]). However,
creating “functional tangible AR” applications remains difficult as
they need to capture and integrate with real-world tangible inter-
actions. Currently, the common practice for such real-world inte-
gration is mainly based on either 1) marker-based tracking [23, 51]
or 2) a custom machine-learning pipeline (e.g., OpenCV [70], Me-
diaPipe [27], etc.). However, marker-based tracking has limited
flexibility due to the nature of printed markers (e.g., cannot be used
to detect object deformation or body motion [97], the marker al-
ways needs to be visible [19], etc.). On the other hand, the custom
machine learning (ML) approach allows great flexibility and cus-
tomizability without the limitation of marker-based tracking (e.g.,
can incorporate physical motion [83], gesture [89], and body-based
interaction [90]), but it requires a significant amount of time and
expertise to program such AR experiences.

This paper introduces Teachable Reality, an alternative approach
to prototyping tangible AR applications by leveraging interactive
machine teaching. Interactive machine teaching [73] is an emerg-
ing machine-learning approach that uses user-guided data for a
custom classification pipeline (e.g., Teachable Machine [11]). By
leveraging this, users can easily define their own in-situ tangible
and gestural interactions in real-time, which allows the user to
prototype functional AR applications without programming. There-
fore, our approach enables quick and easy prototyping similar to
marker-based approaches, while allowing flexible, customizable,
and general-purpose interactions, similar to the machine learning
approach. While interactive machine teaching itself is not new, this
paper contributes to the first integration of interactive machine
teaching into AR authoring. Based on formative interviews, we
design our tool as an end-to-end system that allows the user to
detect, train, bind, and author physical-virtual interactions entirely
within a mobile AR interface without the need of going back and
forth between programming on a desktop screen and testing in the
real world. In addition, we explore the design space of our proposed
approach. We show the potential of our tool by demonstrating
various application scenarios, including tangible and deformable
interfaces (Figure 1-D, E), context-aware assistant (Figure 1-B, C),

augmented and situated display (Figure 1-G, H), and body-driven
AR experiences (Figure 1-A, F).

We evaluate our approach through two user studies: 1) a us-
ability study with 13 participants and 2) expert reviews with six
tangible AR experts. The study results confirm that our approach
can lower the barrier to creating functional AR prototypes while
allowing flexible and general-purpose prototyping experiences. We
also found that our approach can complement existing practices,
such as marker-based or machine-learning approaches, by allowing
rapid iteration toward a high-fidelity prototype. We discuss both
benefits and limitations of our approach, pointing out the future
opportunity for tangible AR prototyping tools.

Finally, this paper contributes:
(1) A new approach to authoring tangible AR prototypes by

combining interactivemachine teaching and in-situ AR scene
authoring.

(2) A design space of our approach, which covers both input and
output of a wide range of real-world tangible and gestural
interactions for AR prototyping.

(3) The insights from the two user studies which highlight the
benefits and limitations of our proposed approach.

2 RELATEDWORK
2.1 AR Prototyping Tools
To better contextualize Teachable Reality within the landscape of
the existing AR prototyping tools, we situate ourselves with the
following dimensions (underlined category is our focus).

1) Fidelity of Prototypes: Low-fi vs. Medium-fi vs. High-fi. Exist-
ing AR prototyping tools can be situated in the spectrum between
low-fidelity and high-fidelity prototypes. Low-fi prototyping tools
like InVision [40], Sketch [41], and Adobe XD [37] allow for quick
initial exploration, whereas tools like A-Frame [3], Unity [33], and
Unreal [43] are complex but enable high-fidelity interactive AR
experiences by providing full-fledged AR development features.
Nebeling et al. [66] argue that there is a significant gap between
low-fi and high-fi prototyping tools to create interactive AR applica-
tions. We aim to fill this gap by providing a medium-fi prototyping
tool. This allows the users to create more realistic AR experiences
than low-fi prototyping tools, while does not require complex pro-
gramming like high-fi prototyping tools.

2) Goals of Prototyping: Interaction Design (Interactive) vs. Con-
tent Creation (Static) AR prototyping workflow often employs two
steps: 1) creating and placing virtual 3D content and 2) defining the
interactions between users and virtual content. Many existing tools
focus on the first category (e.g., HoloBuilder [1], GravitySketch [39],
SketchUp [42], Lift-Off [46], RealityComposer [38], Adobe Aero [36],
SceneCtrl [96],Window-Shaping [34],DistanciAR [91]). On the other
hand, Teachable Reality focuses on interaction design, similar to
systems like DART [63] and ProtoAR [65], by assuming the user
can reuse existing 3D models.

3) Deployment of Prototype: Functional vs. Mock-up When pro-
totyping interactive AR experiences, the system needs to detect,
track, and understand real-world interactions. Many tools avoid
this problem through mock-up prototyping (e.g., video-prototyping

2

https://doi.org/10.1145/3544548.3581449

like Pronto [59],Montage [57] or Wizard-of-Oz prototyping like Pro-
toAR [65], 360proto [64], 360theater [81],WozARd [5]). In contrast,
Teachable Reality, like Rapido [58], aims to create a functional AR
prototype, allowing real-world deployment and live user testing in
an everyday environment, which is an important need for current
AR designers and prototypers [7].

4) Programming Approaches: Programming by Demonstration
vs. Programming by Specification. Existing approaches to creating
functional AR prototypes often rely on simple textual or visual
programming. For example, many marker-based AR prototyping
tools use block-based or node-based programming, such as AR-
Cadia [52], iaTAR [56], ComposAR [79], RealityEditor [33], and
StoryMakeAR [25]. Alternatively, trigger-action authoring, which
is often used with simplified visual programming, allows users to
create interactive behaviors by binding a trigger event with a cor-
responding action, as seen in ProGesAR [95], Situated Game-Level
Editing [67], MRCAT [92], and Aero [36]. In either case, most of
these tools require the user to explicitly specify the desired trigger
and action, which can be difficult to work with real-world interac-
tions due to complexity and ambiguity. In contrast, our tool, while
leveraging trigger-action authoring, allows the creation of interac-
tive behaviors through physical user demonstration, similar to
Rapido [58], CAPturAR [90], and GesturAR [89]. Compared to these
tools, however, our tool can support more flexible and open-ended
demonstrations by leveraging interactive machine teaching. For
example, while Rapido [58] focuses on screen-based interactions,
our tool allows the user to demonstrate tangible and physical inter-
actions. This approach not only allows gesture [89] or body-based
interaction [90] but also supports a range of user-defined tangible,
gestural, and context-driven interactions, such as object deforma-
tion, environment detection, and face recognition. While there may
be a trade-off in tracking accuracy, our approach can significantly
reduce the need for multiple different tools [7, 54] and fill the gap
in the fragmented AR prototyping landscape [66].

2.2 Everyday Objects as User Interfaces
Since the birth of tangible and graspable user interfaces [22, 45],
HCI researchers have explored ways to use everyday objects and
environments as user interfaces. For example, in the context of
AR/VR interfaces, researchers use everyday objects as haptic prox-
ies [18, 21], such as Annexing Reality [32], VirtualBricks [6], and
GripMarks [98] or blend virtual experiences into surrounding envi-
ronments [49, 62], such asWorldKit [94] and IllumiRoom [47]. These
prior works augment the tangible paper with fiducial markers (e.g.,
Replicate and Reuse [29], Paper Trail [72], HoloDoc [60], Tangible VR
Books [10], Printed Paper Markers [97]), or augment surrounding
objects and environments with smartphone cameras (e.g., LightAn-
chors [4]), depth-cameras (e.g., RealFusion [12], 3D Puppetry [31]),
or embedded invisible tags (e.g., InfraTag [19]). Similar to our work,
some works also explore in-situ creation of tangible interfaces (e.g.,
iCon [13], Instant User Interfaces [16], Ephemeral Interaction [88],
Fillables [17], Tangible Agile Mapping [87], Opportunistic Interfaces
for AR [20]). However, one of the key limitations of these tools is the
need for more flexibility and generalizability due to the pre-defined
tangible inputs. In contrast, our tool leverages interactive machine

teaching, allowing more flexible and customizable user inputs than
existing tools.

2.3 Interactive Machine Teaching
Interactive machine teaching is an approach to creating an on-
demand machine learning model based on user-guided data [73].
In recent years, systems like Teachable Machine [11] have demon-
strated the potential by allowing the user to quickly create a classi-
fication model through user demonstration. LookHere [99] further
expands this approach by exploiting users’ deictic gestures to create
a more accurate model. Since interactive machine teaching is easily
accessible for non-technical users, the existing research shows the
potential of this approach for tangible storytelling [85], human-
robot interaction [93], educational toolkits [14], and programming
environments for children [48, 71, 77]. However, to the best of our
knowledge, there is no existing work that integrates interactive ma-
chine teaching into AR authoring or even AR interfaces in general.
Since interactive machine teaching itself only supports the creation
of the ML model, there is still a significant barrier to incorporating
the ML model into AR applications. In contrast, Teachable Reality
allows for a no-coding prototyping experience entirely within AR.
Thus the user does not need to go back and forth between program-
ming on a desktop and testing in the real world, enabling faster
iteration and design exploration, all of which are informed by our
formative study.

3 FORMATIVE STUDY AND DESIGN GOALS
To better understand the need for such a system, we conducted
formative interviews with six participants (P1-P6) who have expe-
rience in prototyping AR applications, tangible UIs, and interactive
applications with Teachable Machine. All interviews were recorded
and later transcribed with the consent of the participants. During
the 30-60 min formative study, we asked about the current practices
and challenges of AR prototyping, especially when designing tangi-
ble interactions or integrating machine learning for input detection.
Two authors conducted a thematic analysis of the transcriptions and
identified emerging themes. Another author resolved and compiled
them into five themes we describe below.

1) Strong Need of Integrating Real-World Interactions for AR
Prototypes. Overall, there is a strong need to integrate tangible ob-
jects and interactions for AR applications. Participants shared their
previous experiences with tangible AR prototype examples, such as
tangible tabletop UI with projection mapping (P4), AR prototypes
for sports or exercises (P6), and an AR collaboration tool using
physical objects (P3). All participants agreed that blended tangible
interaction makes AR applications more unique and interesting.

2) Lack of Flexibility in Marker-based Tracking Techniques.
When creating such tangible AR applications, participants often
used marker-based tracking (P1, P2, P3, P5). However, they also
complained about the limitations of marker-based tracking. For ex-
ample, the hand occlusion problem diminishes the intended natural
interaction (P1, P2). Moreover, participants also point out the lack
of flexibility by saying that they need to think of the applications
based on what fiducial markers can do rather than what they want
(P3). Due to these limitations, the participants sometimes needed

3

to rely on Arduino and electronic sensors to detect interactions (P1,
P3, P6), which could introduce significant overhead (P1). Overall,
the participants think that integrating tangible interactions in AR
prototypes is “tricky” (P1, P4).

3) Integration ofComputer Vision toAR isNotWell-Supported.
Participants also used custom computer vision models for gesture
detection (P2, P4, P6), but they pointed out that handling raw data
to detect a custom gesture was really tedious (P4). Some partici-
pants acknowledge that tools like Teachable Machine can lower
the barrier, but they also mentioned that integration into AR appli-
cations is a challenge (P4, P6). “P6: I used Teachable Machine, but
it is still very time-consuming to integrate it as everything needs to
be programmed from scratch”. In general, participants complained
about the lack of available options to integrate real-world tracking
into AR. “P1: I don’t believe tools like RealityComposer has any ML
support. So if I want to detect custom actions, that’s not an option.”

4) Need forQuick PrototypingWithout Programming. When
asked why they needed integrated tools, they answered that cre-
ating a functional prototype is a huge commitment as it can take
days to even months (P2, P4, P5). Because of this, most of the par-
ticipants typically used low-fi prototyping methods such as stop
motion (P2), Figma (P1), and Wizard of Oz Powerpoint (P4). “P1:
Within the company, we often use Figma to convey concepts, but it’s
very hard to actually get a sense of what it’s going to feel like.” They
agreed that actual functional prototypes allow for a more creative
ideation process and easier communication within the team. More-
over, despite their extensive programming experience, they also
want to avoid programming as much as possible for quick iteration.
Therefore, participants strongly agreed that there is a strong need
for an integrated authoring tool without programming.

5)Need for In-SituAuthoring andLive Testing. All participants
agreed that the current prototyping workflow using platforms like
Unity needs a lot of back and forth. “P1: It just takes so long to build
and push code on AR devices, then sometimes some of the features don’t
work as expected and so again” “P4: A lot of back and forth between the
development devices on the Desktop and the testing devices like mobile
phones and the Hololens.” Moreover, they need the virtual assets to
be synchronized and directly manipulatable in the AR scene rather
than on a separate computer screen (P4, P6). Therefore, it is essential
to support in-situ authoring and a live testing environment that
leverages both direct manipulation and real-time feedback.

We identified five goals based on the themes that emerged from the
formative study analysis, which inform our system design.

(1) Real-World Integration: should support rich real-world
interaction for a blended AR experience.

(2) Flexible Tracking: should support flexible interaction and
tracking for various application scenarios.

(3) Integrated AR Authoring: should integrate input detection
and AR output authoring in the same environment.

(4) Direct Manipulation: should allow the user to prototype
interactive experiences without programming.

(5) Live and Real-Time Testing: should support the immediate
live testing in the real world for quick design iteration.

4 TEACHABLE REALITY
4.1 Overview
Teachable Reality is a mobile AR prototyping tool that combines
interactive machine teaching and in-situ AR authoring. Teachable
Reality has three key features: 1) interaction detection: interaction
detection based on an on-demand computer vision classification
model, 2) in-situ AR authoring: AR authoring environment that lets
the user quickly create desired interactive AR behaviors based on
user-defined trigger action, and 3) live deployment and testing: the
user can quickly deploy the AR prototypes for iterative live testing
in an everyday environment. Teachable Reality has a simple user
interface. The main window shows the live current AR view that
provides both authoring and live testing views. The right panel on
each screen (Figure 2) presents different options to the user during
the two stages of authoring: 1) capture and store the different input
states, and 2) save and display each state’s corresponding output.

4.2 Authoring Workflow
Step 1: Capturing and Demonstrating the Interaction. The
first step is to capture a user’s interaction with the tablet’s cam-
era. When the user taps the Add Data button, the camera starts
capturing the scene from the main window so that the user can
demonstrate the desired input interaction with an everyday object
or environment. The user can add data for multiple states capturing
stages of one interaction or multiple interactions according to their
need. For example, the user defines four different states based on
the position of the black slider handle in a box cutter (Figure 2A).
Once the user finishes capturing and taps the Next button, the sys-
tem creates a computer vision classification model based on the
provided data and starts automatically detecting each state based
on the classifier, similar to Teachable Machine [11].

Step 2: Authoring AR Scene for Each Interaction State. After
registering each state, the user can author each AR scene with
direct manipulation. To do so, the user can tap the + button. Then
the user can choose a virtual asset from an asset library (prepared
by the user or some default objects) to place into the scene. When
tapping the Save button located below each state, the user can
register the current AR scene as a corresponding AR scene. The
placed virtual object can be manipulated with the touch gesture,
such as drag-and-drop for position change, pinching gesture to
change the scale, and twist gesture to change the orientation. The
user can quickly define the interactive behavior by moving the
virtual object and saving the scene corresponding to each saved
state. The interactive behavior consists of the trigger—the detection
of each state and action—storing the corresponding AR scene. For
example, Figure 2B illustrates the workflow where the user places
a 3D model of a tree on a table, changes the size of the tree with
pinching interaction, and then saves it to the corresponding state.
When placing the virtual object, the user can also choose different
asset types (e.g., 3D object, 2D images, etc) and anchored locations
(e.g., surface, object, image, camera, etc), as we discuss in the design
space section (Figure 3).

Step 3: Live Testing with Automated Scene Detection. Once
the user finishes authoring the AR scene for each state, the proto-
type is deployed, and the user can start live-testing the prototype.

4

St
ep

 1
: T

ra
in
in
g

C

St
ep

 2
: A

ut
ho

rin
g

St
ep

 3
: T

es
tin

g

Train the model
by capturing and

demonstrating
the Interaction

Author AR scene
by manipulating
3D models for

each state

Test the AR
experience with

automated
scene detection

Figure 2: Authoring Workflow of Teachable Reality: Using a paper cutter as a slider to control the scale of a virtual tree: A)
User captures three states of the everyday object while demonstrating the tangible interaction. B) User saves the output of
the virtual world corresponding to each input state. On importing the virtual asset, the user manipulates the virtual asset
according to the desired output and saves it to every corresponding input state. C) User tests the created prototype, which
animates between all the outputs that were saved.

In the live preview mode, the system starts automatically detecting
the different user-defined states. When transitioning from one state
to another, the system automatically animates the virtual object
between the corresponding AR scenes, similar to the digital an-
imation technique of auto-tweening. For example, in Figure 2C,
the size of the virtual tree changes based on the position of the
blade slider of a box cutter, as if the user can use it as a tangible
slider. The scale of the virtual tree smoothly due to the automated
animation feature, as we described. When transitioning between
two stored positions of the slider, the scale of the tree interpolates
between the two corresponding scenes the user had demonstrated.
For example, in Figure 2C, the size of the virtual tree changes based
on the position of the blade slider of a box cutter, as if the user can
use it as a tangible slider.

5 IMPLEMENTATION
To democratize tangible AR prototyping experiences, we release
our prototype as an open source software 1. In this section, we
describe the implementation detail for each core functionality.

AR Authoring Interface. Teachable Reality is a web-based mobile AR
system that runs on any browser that supports theWebXR platform.

1https://github.com/kyzylmonteiro/teachable-reality

We tested the system with Google Chrome on Android (Google
Pixel 6) and Safari on iOS (iPad Pro 12.9-inch). It is developed using
JavaScript, HTML, and CSS and runs entirely on the client side
of the browser without needing a web server. The system uses
8th Wall [2], A-Frame [3], and Three.js [84] for the immersive AR
authoring system. A-frame enables the placement, manipulation,
and animation of virtual assets. While 8th Wall provided us access
to spatial understanding, including surface detection and device
position tracking.

Image Capturing and Classification. 8th Wall uses the tablet’s cam-
era stream to detect the device’s position and surface in a real-world
environment based on a proprietary SLAM algorithm. We also use
the camera stream from 8th Wall for user-defined camera recording
as well as the object and human pose detection. For the recorded
image classification, we leverage transfer learning using Tensor-
flow.js, which is the same backend as Teachable Machine [11]. The
system runs Tensorflow.js on the client side for both the training
and inference phase. Since the system needs to train the ML model
on-demand, the system trains the model with a separate thread
using Web Worker in the background. To reduce the training time,
the system leverages the MobileNet model [28] as the base model
pretrained on the ImageNet dataset [76]. Training time significantly
varies depending on the scenario, thus it is difficult to generalize.

5

https://github.com/kyzylmonteiro/teachable-reality

3D Object
Tangible AR [8]

2D Object
Opportunistic Interfaces [20]

Audio
Music Bottles [44]

Animation
Project Zanzibar [86]

Particle
Social Media Filters

Surface
Augmented Displays [75]

Spatial
SynchronizAR [35]

Camera
RealityTalk [61]

Image
Opportunistic Interfaces [20]

Object
Light Anchors [4]

Appear & Disappear
HoloDoc [60]

Move & Transform
Living Paper [15]

Count & Aggregation
ARMath [50]

Parameterized
RealitySketch [83]

Pre-programmed
Ephemeral Interactions [88]

O
u
tp
u
t

O
b

je
ct

 T
yp

e
 A

n
ch

o
r

Lo
ca

ti
o

n
B

eh
av

io
r

Visibility Position Orientation Appearance Deformation

In
p
u
t

D
et

ec
ta

b
le

 P
ro

p
er

ty

Combination Relationship

Su
b

je
ct

 T
yp

e

C
la

ss
ifi

ca
ti

o
n

ContinuousDiscreteObject

Handheld Tabletop Furniture

Human

Hands Face Body

Environment

Built-in
equipment

Room Building

Figure 3: Design space of supported modalities of input and output for tangible AR prototypes.

However, the average training time with 5 states and 100 images for
each state took approximately 16.5 sec with 30 trials of the different
scenes (min: 8, max: 20.5 sec) with iPad Pro 12.9 inch (M1 chip, 8
Core CPU, 8 Core GPU, and 16GB RAM).

Object Tracking for Location Anchoring. The system also detects and
tracks the object for location anchors. For the surface and spatial
anchoring, the user uses a detected surface and 3D coordination
based on 8th Wall’s built-in spatial anchoring features. For image
anchoring, the system also uses the 8th Wall’s image target feature.
For object tracking, the system tracks the object’s position based

on color tracking. When the user specifies the tracking color by
tapping the object on a screen, the system obtains the RGB value
of the 2D coordinate, then detects the largest contour of the object
with OpenCV.js [70]. Then, the system obtains the 3D position of
the tracked color, by raycasting onto the virtual surface. Therefore,
the system can only track the object’s position on a surface. For
human-anchored positions, we use MediaPipe [27] to obtain the
human skeleton position data. The system maintains the virtual
object location based on the selected anchored origin.

6

6 DESIGN SPACE
Asmentioned, Teachable Reality adopts the trigger-action authoring
model, which consists of input (trigger) and output (action) for
the interactive AR experiences. To better understand what kind of
input and output our system can support, we present a design space
exploration of Teachable Reality’s supported modalities (Figure 3).
To explore the design space, we investigated the existing literature
on tangible interfaces to identify common elements of input and
output for tangible AR applications. To create a generalizable and
flexible design space, we first collected examples of tangible AR
research, products, and art installations. Then, we abstract the
common elements that can be seen in these examples through
sketching and categorization. Figure 3 illustrates these abstracted
sketches along with a representative example for each category, by
providing the name of the project and research paper. While this
design space may not be a systematic or exhaustive exploration
of all possible tangible AR interfaces, we believe our design space,
along with representative examples, provides an overview of what
our approach enables and how each element could be used for
various applications.

6.1 Input: Types of Subject
At a high level, the system can use any subject as an input as long
as it is visible and detectable with the camera. While the design
space of detectable subjects is vast, we show three main possible
types of subjects (Figure 4).

Figure 4: Input - Types of the subject: The system supports
various subjects as inputs, such as objects, humans, and en-
vironments.

6.1.1 Object. First, the system can detect a variety of physical
objects from handheld- to room-scale objects, such as toys, mugs,
papers, books, and furniture, likeHoloDoc [60] and 3D Puppetry [31].
The system can detect various tangible interactions with these
detected physical objects.

6.1.2 Human. Also, the user can use a human as an input subject,
including hand gestures, facial expressions, and body postures, sim-
ilar to Interactive Body-Driven Graphics [78] or RealityTalk [61]. Our
system itself does not have built-in gesture or posture recognition,
but the user can train the model to recognize them in-situ.

6.1.3 Environment. Moreover, while the system itself does not
incorporate the device’s position or location information, the user
could also use a scene and environment as the user input. For
example, the user could identify a location or room like a kitchen,
bathroom, or living room based on a landmark that is visible with a
camera. The user can also quickly create and test an AR navigation
experience like Live View in Google Maps [26], as seen in Figure 4C.

6.2 Input: Types of Classification
Depending on how the user trains the model, the user can also
detect as two different types of inputs.

6.2.1 Discrete. Discrete input means that the detectable states are
independent and there is no continuous relationship. By default,
Teachable Reality treats all registered states as discrete and indepen-
dent inputs. For example, the binary state of visibility or different
hand gestures are all discrete inputs.

6.2.2 Continuous. But, by registering states in a sequential man-
ner, the user can also define continuous input. For example, the
user can use the continuous change of the position, orientation, or
deformation of the object as a staggered input parameter. By using
this, the user could mimic and treat the input as a numerical and
sequential value for a tangible controller (Figure 5).

Figure 5: Input - Continuous: Change the size of the virtual
chair based on the distance between two hands.

6.3 Input: Types of Detectable Properties
Depending on how the user trains the model, the system can also
detect different states of the object for tangible interactions.

6.3.1 Visibility. First, the user can detect the presence or absence
of the object based on visibility in the scene. For example, the user
can create a binary state to detect whether the user is holding an
object in the field of view or not.

6.3.2 Position. Alternatively, the user can detect the different po-
sitions of the object in the field of view. For example, the user can
use the position of the handle to change the scale of a virtual object
just like a tangible slider, similar to RealitySketch [83].

6.3.3 Orientation. The user can also use the orientation of the
object as an input. For example, the user can quickly create an
AR application to show different information about a credit card,
such as total balance or detailed monthly expenses, based on the
orientation of the card (Figure 6).

Figure 6: Input - Orientation of the object: The user rotates
the card to expand on their transaction.

7

6.3.4 Appearance. The user can also detect the different appear-
ances of the object. Based on the appearance, the user can show
different virtual content based on the color of the block, the cover
of the book, the application screen of the phone, and the content of
a paper.

6.3.5 Deformation. Also, the user can detect deformation of the ob-
ject, such as bendable paper, expandable Hoberman sphere, origami,
and a slinky spring toy (Figure 7). The user can use these deformable
objects as input, or alternatively, the user can create an instruction
based on the shape of each state (e.g., AR origami instruction).

Figure 7: Input - Deformation of the object: The user can use
a deformable object like paper as input to an origami AR
instruction animation to show the next step.

6.3.6 Combination. While the above categories are mostly focused
on a single object’s properties, the user can also detect a combina-
tion of objects. For example, by identifying the combination of a
hand and an object, the user can detect a simple touch interaction
with a physical object.

6.3.7 Relationship. While the combination focuses only on the
presence or absence of multiple objects, the user can also use rela-
tionships between multiple objects. For example, by detecting the
finger’s relative position to a paper, the user can mimic multiple
touch point detection for the physical paper (Figure 12). Alterna-
tively, the user can also detect the distance between two objects,
different grasping gestures for the object, or different arrangements
of the multiple objects (Figure 8).

Figure 8: Input - Relationship of the multiple objects: The
system detects the different positional relationships between
two blocks.

6.4 Output: Types of Virtual Objects
For AR output, the user can place various virtual objects into the
AR scene. Here, we describe different types of virtual objects that
are supported by our system.

6.4.1 3D Objects. First, the user can place a virtual 3D object in
the scene by importing from existing assets (Figure 9). To do so, the
user can simply press the 3D Object button, then the system lets the
user select from the available 3D objects. The user can also prepare
their own assets to place in the scene. Once placed, the user can
change the position, orientation, and scale of the object through
touch interaction.

Figure 9: Output - 3D Object: Showing different 3D objects
like deer, dog, and elephant, based on the different gestures.

6.4.2 2D Images. The user can also place a 2D image in a scene and
create prototypes similar to Opportunistic Interfaces [20]. The user
first taps the 2D Image button, then selects the image. 2D image is
shown as a texture of the virtual plane in the 3D scene. Therefore,
similar to 3D objects, the user can also interactively change the
position, orientation, and scale of the 2D objects.

6.4.3 Audio. The system also supports audio output to help create
experiences. To do so, the user can simply select an mp3 file, then
the system plays the sound when the action is triggered (Figure 10).
This way, the user can create a multi-modal output to enrich the
AR experience. For example, by detecting the different state of the
physical bottle, the user can show a virtual animation and music
output when opening the bottle cap, similar to Music Bottles [44].

Figure 10: Output - Audio: Playing audiowhen the lid is lifted.

6.4.4 Other Outputs. The user can also embed various types of
pre-programmed assets, such as character animation like in Project
Zanzibar [86], particle effects, or embedded screens. This enables
users to create prototypes of experiences similar to social media
filters. Again, the system can load these various types of outputs
based on the file import or iFrame. By leveraging the embedded
screens, the user can also show other useful outputs like interactive
charts or data visualizations.

6.5 Output: Anchored Location
The system also supports different types of anchored locations
where the imported virtual object should be placed. When placing
a virtual object, the interface lets the user select the anchored
location type. By moving the virtual object, the system maintains
the position relative to the anchored location.

8

6.5.1 Surface Anchored. By default, the user can place an object
onto a detected surface (Figure 11). Based on the system’s built-
in surface detection, the user can place a virtual object anchored
on a horizontal or vertical surface like a table, floor, or wall like
Augmented Displays [75].

Figure 11: Output - Surface Anchored: The user can spawn
the trees as the position of the token moves.

6.5.2 Spatial Anchored. Similarly, the user can also place a floating
virtual object, which stays in a certain spatial position in mid-
air. To do so, the user can simply tap the spatial option, then the
user can start manipulating the object without the bound of the
detected surface. Since the mobile AR system can track the spatial
position, the spatially anchored object stays in the same position,
regardless of the movement of the mobile phone. This allows the
users to create prototypes for a system like spatial collaborations
like SynchronizAR [35].

6.5.3 Camera Anchored. Instead of placing on a spatially-anchored
location, the user can also make information always visible by
overlaying it in the user’s field of view similar to the technique
used by RealityTalk [61]. When the user taps the overlay option, the
virtual object is anchored on a screen, so that the user can move
the position of the virtual object within the 2D screen.

6.5.4 Image Anchored. The user can also place a virtual object
anchored around the image based on the provided target image to
create prototypes similar to Opportunistic Interfaces [20]. In this
case, the virtual object moves along with a paper (Figure 12). To
do so, the system leverages a common image target tracking based
on the provided image. When the user taps the image option, the
system lets the user specify the image target based on the selected
or uploaded image.

Figure 12: Output - Image Anchored: The user can prototype
an augmented display to show related information when
reading papers.

6.5.5 Object Anchored. The user can also anchor a virtual object
to a physical object or a human (Figure 13). In contrast to image
anchored, object anchored can be any physical object or human,
which can be useful for object-related information like annotation
as seen in Light Anchors [4]. When the user taps the object option,

the user can then tap an object to specify the tracked object. To
track an object’s position, the system uses simple 2D color tracking
and raycasting to obtain the 3D position on a surface, similar to
RealitySketch [83]. Therefore, the tracking works best with a solid
colored object.

Figure 13: Output - Object Anchored: The user can turn off
silent mode by flipping the smartphone and hiding notifica-
tions.

6.6 Output: Behavior of Virtual Output
As we mentioned, when transitioning from one state to another,
the system automatically animates the object. On top of that, the
system also supports several additional output behaviors based on
the trigger event.

Figure 14: Output - Appear-Disappear: A ball appears when
a ball is sketched and Moving & Transformation: The ball
moves when the user sketches an arrow.

6.6.1 Appear and Disappear Animation. The most basic output is to
appear and disappear a virtual object given the state. By default, the
system adds an animation when appearing and disappearing the
virtual object by gradually changing its scale. This enables creation
of prototypes similar to TangibleAR [8], Holodoc [60], and Light
Anchors [4].

6.6.2 Moving and Transforming Animation. Another basic output
effect is the movement and transformation of the virtual object. By
manipulating the virtual object’s position, orientation, and scale for
each state, the user can easily create a moving and transformation
effect. This can enable the creation of controllers and a tangible user
interface, similar to Living Paper [15], Instant UI [16], Ephemeral In-
teractions [88], and Bentroller [80]. By default, the system animates
the transition of the virtual object while moving or transforming.
For example, the system animates the ball’s movement, when tran-
sitioning from one location to another (Figure 14).

6.6.3 Counting and Aggregation. The user can also use the detected
count for each state. The system automatically counts how many
times the specific state is triggered (transitioned from another state)
so that the user can also use this value as an output parameter. For
example, this can help the user to create a simple counter such as a

9

count for push-ups or weight-lifting (Figure 15) or an AR prototype
of ARMath [50]. The user can also integrate this value into HTML
to show some aggregated behavior like a graph.

Figure 15: Output - Counting: Counts the number of times a
state is achieved

6.6.4 Parameterized Output. Each state is basically discrete from
the other, but the user can also define a continuous parameter, as
we discussed. For example, the user defines six states based on the
position of the tangible object, then the user can use each state
as a staggered parameter like [0.0, 0.2, 0.4, 0.6, 0.8, 1.0], given the
start (0.0) and end value (1.0). By binding this value to the virtual
object’s parameter, the user can also create a parameterized output
similar to experiences created by RealitySketch [83]. For example,
the user can associate the parameterized value to the orientation
of the virtual object to create a circular slider.

6.6.5 Pre-programmed Control. Finally, the user can also integrate
custom scripts for pre-programmed behaviors. For example, the
user can change the orientation of the 3D car model based on the de-
tected states of a tangible steering wheel (e.g., left, center, and right,
based on the three states) similar to Ephemeral Interactions [88],
MarioKart Live [68], and Nintendo Labo [69]. The user can also
add a simple script to move the car forward for each time interval
as pre-programmed behavior. Then, the user can create a simple
virtual radio-controlled car with a tangible steering wheel. The user
can also associate custom script behavior to a certain detected state
as well (e.g., hiding the steering wheel to stop the car).

Figure 16: Output - Pre-programmed Control: To drive a vir-
tual RC car with a plate as a controller

6.7 Applications
Based on the combination of these numerousmodalities, we identify
some promising domains and application scenarios.
1) Tangible and Deformable Interfaces: The user can create an
in-situ tangible controller with everyday objects similar to Instant
UI [16], Ephemeral Interactions [88], and RealitySketch [83], Mu-
sic Bottles [44]. Also users can explore creating deformable user
interfaces similar to FlexPad [82], Bendtroller [80], and Non-Rigid
HCI [9].

2) Context-Aware Assistant and Instruction: The user can also
quickly prototype context-aware assistants, AR tutorials or instruc-
tions similar to Smart Makerspace [53]
3) Augmented and Situated Displays: The user can replicate situ-
ated displays like HoloDoc [60], BISHARE [100] where the AR scene
shows the information related to the object the user is interacting
with.
4) Body-DrivenAR Experiences: The system can support the quick
prototype of body-driven applications, such as exergaming, enter-
tainment, and exercise support. For example, the user can prototype
an exercise assistant which identifies correct and incorrect postures
of exercises.

7 EVALUATION
We evaluated Teachable Reality in two parts: (1) a usability study
and (2) expert interviews. Our study design was based on the “usage
evaluation” strategy from Ledo et al.’s HCI toolkit evaluation [55].
Usability studies with end users aim to help verify whether the
system is conceptually clear, easy to use, and useful. However,
since Teachable Reality is the first to explore rapid prototyping for
tangible augmented reality, there is no clear baseline for us to make
comparisons with. To address this, we conducted expert interviews
to gain insights into current common practices and existing tools.
We expect both usability studies and expert interviews will help us
identify the benefits and limitations of the current system and gain
insights for future iterations.

7.1 Usability Study
7.1.1 Method. We evaluate the usability of our system by asking
the user to perform four prototyping tasks. We recruited 13 par-
ticipants (7 male, 6 female, ages 20-37) from our local community.
They all had varying experiences with AR applications on mobile
phones, tablets, and head-mounted devices.

7.1.2 Introduction and Set-up. A step-by-step walk-through of the
system was given to each participant, using a simple example of
spawning virtual objects based on the appearance of a physical
object. The participants were given an iPad with a keyboard and a
stand to use for the study.

7.1.3 Pre-Defined Tasks. The participants were then asked to per-
form three pre-defined tasks. For each of the pre-defined tasks, the
participants were shown a video demonstrating what had to be
created for the task. We chose three simple tasks that enabled the
users to explore and use most features of the system. The tasks
were as follows:

(1) Object: Control a virtual object scale with a physical object.
(2) Environment: Decorate the environment with a virtual object.
(3) Body: Control the position of a virtual object with body pose.

7.1.4 Open-Ended Task. For the open-ended final task, we asked
participants to create prototypes they would like to create using
the system. We gave participants inspiration by showing them
example prototypes that were created using Teachable Reality. We
also provided them with 60 3D objects and 15 physical objects for
further inspiration for their creation. We gave minimal assistance
to the participants for this task. All tasks were screen recorded to
obtain objective measurements (recognition errors, task completion

10

Overall Experience

Fast Prototyping

Easy to Use

Flexible

Enjoyable

Lower Barrier

Accurate

Creative

Functional

Object

Human

Environment

Users
0 2 4 6 8 10 12

Strongly Disagree

Strongly AgreeSomewhat Agree Mostly Agree

Mostly Disagree Somewhat Disagree Neither Agree or Disagree

Figure 17: Usability Questionnaire Responses of 13 participants

time, etc). After the four tasks, the participants were asked to fill
out a questionnaire evaluating their experience. The study lasted
approximately 30-45 minutes per participant, and the participants
were compensated with $10 CAD Amazon Gift card.

7.1.5 Results.
1) Overall Experience: Overall, participants responded positively
about their prototyping experience. Participants understood how
Teachable Reality worked at a high level, found it easy to use, and
felt that it was useful. We asked the participants to rate various
aspects of Teachable Reality on a 7-point Likert scale followed by
some subjective questions. Figure 17 summarizes the 7-point Likert
questionnaire response of the usability study.
2) Strengths: Participants found that the workflow was clear (P6,
P8), fun (P7), easy to understand (P1, P7, P8), and intuitive (P3, P10).
Participants also found the system very enjoyable and rated the
system 5.92 on a scale of 1 to 7 for the enjoyability (SD = 1.65).
P1: “I wanted to play with it all day!”. Participants also stated that
they were able to materialize their idea very quickly (P3, P8, M =
5.61, SD = 1.32) for fast prototyping. Participants took 163 seconds
(SD = 83s) on average to complete a task (Object-based - 141s,
Environment 157s, Human 114s, Open-ended - 238s). Participants
agreed the system lowers the barrier (M = 6.07, SD = 1.18) for users
from a non-development background. All participants had varying
experiences with AR but most participants appreciated Teachable
Reality’s no coding interface. P10: “The system is straightforward
[and] doesn’t use any highly technical language, so it would be a
great tool for someone unfamiliar with programming.”. The flexibility
of the tool was also recognized by the participants. Especially the
capability of creating prototypes with physical objects was seen to
be useful (M = 6.61, SD = 0.50). P5: “I definitely think there are lots
of opportunities in being able to pick up anything off your desk

and being to instrument it.” Participants appreciated the authoring
of input and output. P7: “Overall the idea of taking photos of what
I want it to respond to was intuitive.” The participants found our
approach of integrating interactive machine teaching and AR to
enable creativity and that the features add more opportunities for
expression (P3). P10: “It provides lots of opportunities for creativity
with minimal effort which I really enjoy.”
3) Areas for Improvements: The participants rated the system’s
accuracy 4.84 on an average (SD = 1.40), which was a concern
among the participants. Recognition errors (like glitches in plane
tracking, or delay in state recognition) were seen often (M = 2 times
per task), however, these were reported to be minor and did not
impair the experience. While most agreed that the interaction of
the workflow and use of assets were intuitive, participants gave us
suggestions to improve the user experience, which include but are
not limited to - the option to delete a virtual asset, an undo-redo
button, increasing the size of the buttons, add instructions in the
system. Novice participants also pointed out that the tool required
them to be creative and that providing some preset animations for
the output could be helpful.

7.2 Expert Interview
7.2.1 Method. Wealso conducted an expert reviewwith six experts
to gain in-depth feedback. They all have AR prototyping experi-
ences (Min: 2, Max: 17 years). The experts are faculty in computer
science and related areas (E2, E3), PhD or Post-Doc researchers in
AR fields (E5, E6), and full-time professional AR prototypers and
researchers in large tech companies (E1, E4). We first demonstrated
the system with a simple example and showed applications to give
a better understanding of the capabilities of the tool. Then, we con-
ducted an in-depth and open-ended discussion about our approach

11

and use scenarios. The interview lasted approximately one hour
for each expert and we provided $20 CAD for their participation.

7.2.2 Insights and Feedback.
1) Overall Impression: All participants were excited by the po-
tential of our tool. Participants found the tool to be quite intuitive
(E1, E4), useful (E4, E5), playful (E1, E6), compelling (E2), general-
purpose (E1), and versatile (E3). They could see that tool could
be easily integrated into their current workflow (E1, E2, E4, E6).
All participants agreed that the live testing feature of Teachable
Reality could significantly reduce the number of iterations needed
during development (E1-E6), by making the prototyping process a
lot easier and faster (E1, E2, E4, E6). E2: “Having this tool available
would make my prototyping much faster.” The output authoring
interactions like drag-and-drop or pinching were also considered
intuitive (E4) and even fun (E1, E6). Besides the general impressions,
the participants also commented on specific strengths (listed below)
and a few limitations (noted in the next section) of our technical
approach.
2) Authoring Workflow and Trigger Action Approach: In terms
of the workflow, all participants found the authoring workflow
easy to understand. For example, one expert pointed out that the
mental model of our workflow is close to the existing creative
thinking process (E4), which allows for easy adoption even for non-
technical people (E3). E4: “It’s taking a principle of animation and
storyboarding. It’s basically just turning a storyboard into real life.
So it’s really easy to understand.”
3) Comparison to Marker-Based Tracking: When compared to
marker-based approaches, the participants appreciate the no-setup
nature of our approach. Without the need for programming or
printing markers, our system significantly reduces the hurdle of
prototyping. The participants also appreciated the general-purpose
capability, compared to the existing tools (E1). In fact, the partici-
pants also found the examples created by the system quite varied
(E6), versatile (E3), and impressive (E4), which can broaden the
prototyping opportunities that are currently not possible (E2). A
participant (E3), who has an extensive experience with the marker-
based approach, mentioned that Teachable Reality could be a viable
alternative to the current practice.
4) Comparison to Teachable Machine: Since one expert (E3) had
used Teachable Machine before, we asked about the difference be-
tween the Teachable Machine and our system. E3 pointed out that
the no-coding authoring and live testing make for a significant
advantage. E3: “One thing that stands out is the fact that it is de-
ployable immediately. If you use Teachable Machine, it’s collecting
the data, and then training, training, training, and then checking,
which is quite ineffective. One benefit of using your tool is that I can
collect the data, manipulate, save virtual content, and deploy the out-
put with a single interface.” In fact, all participants also appreciate
Teachable Reality’s no-coding approach. E1: “Even though I know
how to program, I like to avoid coding. I always lean towards not
coding.” The participants agreed that our tool can lower the barrier
for AR allowing designers with visual design backgrounds to create
interactive prototypes (E3, E4).
5) Communication Tools as a Potential Use Case: When asked
about potential use cases, the experts suggested the strong potential
for a communication tool (E1, E2, E4). E4: “I would use it, especially

if I’m working in a really collaborative environment if I had an idea,
and I wanted to demonstrate it really quickly and have somebody try
it out, before I spend a lot of time actually implementing the thing
in code.” Currently, they share an idea through a video storyboard,
but these storyboards are still just an approximation and there is
still a communication gap between designers and programmers (E1,
E4). Teachable Reality could solve this problem by allowing design-
ers and non-technical people to demonstrate and share their idea
quickly between teams. E5 and E6 also mentioned that they would
definitely use Teachable Reality for their own current projects if
possible.

8 LIMITATIONS AND FUTUREWORK
Addressing Limitations of Computer Vision
Based Approaches
While our choice of computer-vision techniques sufficed for novice
study participant’s prototyping needs and determined suitable by
experts for demonstrating a concept (E4), we acknowledge concerns
raised generally about its reliability when tested in the wild in
uncontrolled environments (E3, E5). In that sense, the participants
thought that our tool was not a replacement of existing methods,
but rather a complement for early stage yet functional prototypes.

Increase Accuracy of Input Detection. Experts raised concerns re-
garding the reliability of the accuracy of the system (E3, E5). As
they had been using computer vision techniques very frequently
they were concerned about how accurate the system was in the
wild. On the other hand, they also acknowledged that the accuracy
may not be a priority concern as the purpose of this tool is just to
demonstrate a concept for oneself or other peers (E4).

We identify the detection accuracy mostly relies on how the user
trains the model, and it is difficult to get stable performance. In
particular, the inaccurate detection performance for environments
or cluttered scenes makes it difficult to test for context-aware ap-
plications. To address these problems, future work should leverage
user-supported training. For example, LookHere [99] uses gestural
interactions to specify which region or object the model should
focus on. In this way, the model accuracy can greatly improve. Al-
ternatively, instead of an RGB camera, we could also enhance the
model training based on the depth camera information like LiDAR
input. This allows more accurate tracking and detection.

More Robust Object Tracking. In our current implementation, we use
simple object tracking based on selected color matching. We adapt
this simple tracking method based on RealitySketch [83], which
reports that color tracking provides the fastest tracking method for
the real-time sketched animation, compared to other sophisticated
algorithms YOLO [74], Faster R-CNN [24],Mask R-CNN [30]). How-
ever, this tracking method is not robust and generalizable enough
for many situations. For example, if the scene has multiple similar
colored objects, the tracking may not work well. In the future, we
expect the recent advances in computer vision will provide more
general, robust, yet fast object tracking methods for our purpose,
similar to robust and fast body tracking algorithms (MediaPipe)
which we used in our prototype.

12

Enhancing Usefulness and Usability
Enabling Complex Prototypes. In addition, while the system could
create a large number of simple prototypes, experts discussed how
future work could look at complex narratives. These would include
non-linear narratives, which could havemultiple branching of states
andmore complex logic. E1 suggested a state machine like approach
which could look at activating and deactivating states according
to the progression of the user’s interactions. E5 suggested a block
programming approach which would give access to more control
over the prototype. We leave these to future work as, though these
approaches will be useful, they will be expensive as it would include
training multiple models on demand synchronously and activating
and deactivating them based on a user’s interactions.

Supporting Multi-Modal Input & Output. In this paper, we mostly
focus on camera-based input using a computer vision model, but
our approach can be generalized to many different inputs. The sys-
tem can combine multiple inputs for more accurate and expressive
interaction. For example, a system that can enable creation of a
navigation application that uses the combination of camera and
location-based inputs. While our scope for output of prototypes
was limited to AR, a potential direction for future work can be to
explore other forms of output in addition to AR like haptics. For
example, A system that enables creation of a haptic experience
which compliments the AR content. This could help create more
holistic tangible AR prototypes. With this in mind, future work can
showcase a more exhaustive design space and compare the interac-
tion space to present each input and output type’s comparison and,
as a result, the pros and cons of each interaction type and modality.

Immersive AR Authoring with HMDs. Our current implementation
uses screen-basedmobile AR, but the integrationwith head-mounted
displays (HMDs) will allow more blended and immersive prototyp-
ing experiences like GesturAR [89]. In this case, the possible limita-
tion is the lack of computational power, which make the training
slow. To avoid this problem, we can leverage cloud-based training
for HMDs.

Towards Explainable and Understandable Input Detection. The ex-
perts also mentioned that there is a hidden learning curve for how
to better train the computer vision model, especially for those with-
out such knowledge. “E1: You might have to remind that designers
don’t really have a sense of how these image recognition works. They
might be surprised when it doesn’t detect a state at a particular angle”.
Experts also pointed out that using ML techniques introduces the
“black-box” nature into the input tracking of the system (E2, E3, E4),
by saying that if the system trains with some unrelated objects in
the background, then it gives incorrect results. They mention that
an Explainable AI interface over the tool would be highly beneficial,
which we leave to future work.

9 CONCLUSION
This paper presents Teachable Reality, an augmented reality (AR)
prototyping tool to create interactive tangible AR applications that
can use arbitrary everyday objects as user inputs. When creat-
ing functional tangible AR prototypes, current tools often need to
rely on markers-based inputs or pre-defined interactions (gesture,
location, body posture, electronic devices, etc), which limits the

flexibility, customizability, and generalizability of possible inter-
actions. In contrast, Teachable Reality incorporates interactive
machine teaching to immersive AR authoring, which captures
the user’s demonstrated action as in-situ tangible input, by lever-
aging on-demand and user-defined compute vision classification.
The user can use these classified inputs to create interactive AR
applications based on an action-trigger programming model. We
showcase various applications examples, which include tangible
and deformable interfaces, context-aware assistants, augmented
and situated displays and body-driven experiences. The results of
our user study confirm the flexibility of our approach to quickly
and easily create various tangible AR prototypes.

ACKNOWLEDGMENTS
This research was funded in part by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC RGPIN-2021-02857)
and Mitacs Globalink Research Internship. We also thank all of the
experts and participants for our user studies.

REFERENCES
[1] 2022. HoloBuilder. https://www.holobuilder.com/
[2] 8th Wall. 2022. Niantic Inc. https://www.8thwall.com/
[3] A-Frame. 2022. A-Frame. https://aframe.io/
[4] Karan Ahuja, Sujeath Pareddy, Robert Xiao, Mayank Goel, and Chris Harrison.

2019. Lightanchors: Appropriating point lights for spatially-anchored aug-
mented reality interfaces. In Proceedings of the 32nd Annual ACM Symposium
on User Interface Software and Technology. 189–196.

[5] Günter Alce, Mattias Wallergård, and Klas Hermodsson. 2015. WozARd: a
wizard of Oz method for wearable augmented reality interaction—a pilot study.
Advances in human-computer interaction 2015 (2015).

[6] Jatin Arora, Aryan Saini, Nirmita Mehra, Varnit Jain, Shwetank Shrey, and
Aman Parnami. 2019. Virtualbricks: Exploring a scalable, modular toolkit for
enabling physical manipulation in vr. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–12.

[7] Narges Ashtari, Andrea Bunt, Joanna McGrenere, Michael Nebeling, and Par-
mit K Chilana. 2020. Creating augmented and virtual reality applications:
Current practices, challenges, and opportunities. In Proceedings of the 2020 CHI
conference on human factors in computing systems. 1–13.

[8] Mark Billinghurst, Hirokazu Kato, Ivan Poupyrev, et al. 2008. Tangible aug-
mented reality. Acm siggraph asia 7, 2 (2008), 1–10.

[9] Alberto Boem and Giovanni Maria Troiano. 2019. Non-rigid HCI: A review
of deformable interfaces and input. In Proceedings of the 2019 on Designing
Interactive Systems Conference. 885–906.

[10] Jorge CS Cardoso and Jorge M Ribeiro. 2021. Tangible VR book: exploring the
design space of marker-based tangible interfaces for virtual reality. Applied
Sciences 11, 4 (2021), 1367.

[11] Michelle Carney, Barron Webster, Irene Alvarado, Kyle Phillips, Noura Howell,
Jordan Griffith, Jonas Jongejan, Amit Pitaru, and Alexander Chen. 2020. Teach-
able machine: Approachable Web-based tool for exploring machine learning
classification. In Extended abstracts of the 2020 CHI conference on human factors
in computing systems. 1–8.

[12] Vinayak Cecil Piya. 2016. RealFusion: An interactive workflow for repurposing
real-world objects towards early-stage creative ideation. In Graphics interface.

[13] Kai-Yin Cheng, Rong-Hao Liang, Bing-Yu Chen, Rung-Huei Laing, and Sy-Yen
Kuo. 2010. iCon: utilizing everyday objects as additional, auxiliary and instant
tabletop controllers. In Proceedings of the SIGCHI conference on Human factors
in computing systems. 1155–1164.

[14] Jinsung Cho, Geunmo Kim, Hyunmin Go, Sungmin Kim, Jisub Kim, and Bongjae
Kim. 2021. DeepBlock: Web-based Deep Learning Education Platform. The
Journal of the Institute of Internet, Broadcasting and Communication 21, 3 (2021),
43–50.

[15] Stephanie Claudino Daffara, Anna Brewer, Balasaravanan Thoravi Kumaravel,
and Bjoern Hartmann. 2020. Living Paper: Authoring AR Narratives Across
Digital and Tangible Media. In Extended Abstracts of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–10.

[16] Christian Corsten, Ignacio Avellino, MaxMöllers, and Jan Borchers. 2013. Instant
user interfaces: repurposing everyday objects as input devices. In Proceedings
of the 2013 ACM international conference on Interactive tabletops and surfaces.
71–80.

13

https://www.holobuilder.com/
https://www.8thwall.com/
https://aframe.io/

[17] Christian Corsten, Chat Wacharamanotham, and Jan Borchers. 2013. Fillables:
everyday vessels as tangible controllers with adjustable haptics. In CHI’13
Extended Abstracts on Human Factors in Computing Systems. 2129–2138.

[18] Florian Daiber, Donald Degraen, André Zenner, Tanja Döring, Frank Steinicke,
Oscar Javier Ariza Nunez, and Adalberto L Simeone. 2021. Everyday Proxy
Objects for Virtual Reality. In Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems. 1–6.

[19] Mustafa Doga Dogan, Ahmad Taka, Michael Lu, Yunyi Zhu, Akshat Kumar,
Aakar Gupta, and Stefanie Mueller. 2022. InfraredTags: Embedding Invisible AR
Markers and Barcodes Using Low-Cost, Infrared-Based 3D Printing and Imaging
Tools. In CHI Conference on Human Factors in Computing Systems. 1–12.

[20] Ruofei Du, Alex Olwal, Mathieu Le Goc, Shengzhi Wu, Danhang Tang, Yinda
Zhang, Jun Zhang, David Joseph Tan, Federico Tombari, and David Kim. 2022.
Opportunistic Interfaces for Augmented Reality: Transforming Everyday Ob-
jects into Tangible 6DoF Interfaces Using Ad hoc UI. In CHI Conference on
Human Factors in Computing Systems Extended Abstracts. 1–4.

[21] David Englmeier, Julia Dörner, Andreas Butz, and Tobias Höllerer. 2020. A
tangible spherical proxy for object manipulation in augmented reality. In 2020
IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE, 221–229.

[22] George W Fitzmaurice, Hiroshi Ishii, and William AS Buxton. 1995. Bricks:
laying the foundations for graspable user interfaces. In Proceedings of the SIGCHI
conference on Human factors in computing systems. 442–449.

[23] Sergio Garrido-Jurado, Rafael Muñoz-Salinas, Francisco José Madrid-Cuevas,
and Manuel Jesús Marín-Jiménez. 2014. Automatic generation and detection
of highly reliable fiducial markers under occlusion. Pattern Recognition 47, 6
(2014), 2280–2292.

[24] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference
on computer vision. 1440–1448.

[25] Terrell Glenn, Ananya Ipsita, Caleb Carithers, Kylie Peppler, and Karthik Ramani.
2020. StoryMakAR: Bringing stories to life with an augmented reality & physical
prototyping toolkit for youth. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–14.

[26] Google. 2022. Live AR View, Google Maps. https://arvr.google.com/ar/
[27] Google. 2022. MediaPipe. https://mediapipe.dev/
[28] Google. 2022. Mobile Net v3. https://tfhub.dev/google/tfjs-model/imagenet/

mobilenet_v3_small_100_224/feature_vector/5/default/1
[29] Aakar Gupta, Bo Rui Lin, Siyi Ji, Arjav Patel, and Daniel Vogel. 2020. Replicate

and reuse: Tangible interaction design for digitally-augmented physical media
objects. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–12.

[30] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask
r-cnn. In Proceedings of the IEEE international conference on computer vision.
2961–2969.

[31] Robert Held, Ankit Gupta, Brian Curless, and Maneesh Agrawala. 2012. 3D
puppetry: a kinect-based interface for 3D animation.. In UIST, Vol. 12. Citeseer,
423–434.

[32] Anuruddha Hettiarachchi and Daniel Wigdor. 2016. Annexing reality: Enabling
opportunistic use of everyday objects as tangible proxies in augmented reality. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems.
1957–1967.

[33] Valentin Heun, James Hobin, and Pattie Maes. 2013. Reality editor: programming
smarter objects. In Proceedings of the 2013 ACM conference on Pervasive and
ubiquitous computing adjunct publication. 307–310.

[34] Ke Huo and Karthik Ramani. 2016. Window-Shaping: 3D Design Ideation in
Mixed Reality. In Proceedings of the 2016 Symposium on Spatial User Interaction.
189–189.

[35] Ke Huo, Tianyi Wang, Luis Paredes, Ana M Villanueva, Yuanzhi Cao, and
Karthik Ramani. 2018. Synchronizar: Instant synchronization for spontaneous
and spatial collaborations in augmented reality. In Proceedings of the 31st Annual
ACM Symposium on User Interface Software and Technology. 19–30.

[36] Adobe Inc. 2022. Adobe Aero. https://www.adobe.com/in/products/aero.html
[37] Adobe Inc. 2022. Adobe XD. https://www.adobe.com/in/products/xd.html
[38] Apple Inc. 2022. Reality Composer. https://developer.apple.com/augmented-

reality/reality-composer/
[39] Gravity Sketch Inc. 2017. Gravity Sketch. https://www.gravitysketch.com/
[40] InVision Inc. 2022. InVision. https://www.invisionapp.com/
[41] Sketch Inc. 2022. Sketch. https://www.sketch.com/
[42] SketchUp Inc. 2022. Sketchup. https://www.sketchup.com/page/homepage
[43] Unreal Inc. 2022. Unreal Engine. https://www.unrealengine.com/en-US
[44] Hiroshi Ishii. 2004. Bottles: A transparent interface as a tribute to mark weiser.

IEICE Transactions on information and systems 87, 6 (2004), 1299–1311.
[45] Hiroshi Ishii and Brygg Ullmer. 1997. Tangible bits: towards seamless interfaces

between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference
on Human factors in computing systems. 234–241.

[46] Bret Jackson and Daniel F Keefe. 2016. Lift-off: Using reference imagery and
freehand sketching to create 3d models in vr. IEEE transactions on visualization
and computer graphics 22, 4 (2016), 1442–1451.

[47] Brett R Jones, Hrvoje Benko, Eyal Ofek, andAndrewDWilson. 2013. IllumiRoom:
peripheral projected illusions for interactive experiences. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 869–878.

[48] Brian Jordan, Nisha Devasia, Jenna Hong, Randi Williams, and Cynthia Breazeal.
2021. PoseBlocks: A toolkit for creating (and dancing) with AI. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35. 15551–15559.

[49] Hiroki Kaimoto, Kyzyl Monteiro, Mehrad Faridan, Jiatong Li, Samin Farajian,
Yasuaki Kakehi, Ken Nakagaki, and Ryo Suzuki. 2022. Sketched Reality: Sketch-
ing Bi-Directional Interactions Between Virtual and Physical Worlds with AR
and Actuated Tangible UI. arXiv preprint arXiv:2208.06341 (2022).

[50] Seokbin Kang, Ekta Shokeen, Virginia L Byrne, Leyla Norooz, Elizabeth Bon-
signore, Caro Williams-Pierce, and Jon E Froehlich. 2020. ARMath: augmenting
everyday life with math learning. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–15.

[51] Hirokazu Kato andMark Billinghurst. 1999. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Proceedings 2nd
IEEE and ACM International Workshop on Augmented Reality (IWAR’99). IEEE,
85–94.

[52] Annie Kelly, R Benjamin Shapiro, Jonathan de Halleux, and Thomas Ball. 2018.
ARcadia: A rapid prototyping platform for real-time tangible interfaces. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–8.

[53] Jarrod Knibbe, Tovi Grossman, and George Fitzmaurice. 2015. Smart makerspace:
An immersive instructional space for physical tasks. In Proceedings of the 2015
International Conference on Interactive Tabletops & Surfaces. 83–92.

[54] Veronika Krauß, Michael Nebeling, Florian Jasche, and Alexander Boden. 2022.
Elements of XR Prototyping: Characterizing the Role and Use of Prototypes in
Augmented and Virtual Reality Design. In CHI Conference on Human Factors in
Computing Systems. 1–18.

[55] David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation strategies for HCI toolkit research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–17.

[56] Gun A Lee, Gerard J Kim, and Mark Billinghurst. 2005. Immersive authoring:
What you experience is what you get (wyxiwyg). Commun. ACM 48, 7 (2005),
76–81.

[57] Germán Leiva andMichel Beaudouin-Lafon. 2018. Montage: a video prototyping
system to reduce re-shooting and increase re-usability. In Proceedings of the 31st
Annual ACM Symposium on User Interface Software and Technology. 675–682.

[58] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping Inter-
active AR Experiences through Programming by Demonstration. In The 34th
Annual ACM Symposium on User Interface Software and Technology. 626–637.

[59] Germán Leiva, Cuong Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2020.
Pronto: Rapid augmented reality video prototyping using sketches and enaction.
In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–13.

[60] Zhen Li, Michelle Annett, Ken Hinckley, Karan Singh, and Daniel Wigdor.
2019. Holodoc: Enabling mixed reality workspaces that harness physical and
digital content. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–14.

[61] Jian Liao, Adnan Karim, Shivesh Singh Jadon, Rubaiat Habib Kazi, and Ryo
Suzuki. 2022. RealityTalk: Real-Time Speech-Driven Augmented Presentation
for AR Live Storytelling. In Proceedings of the 35th Annual ACM Symposium on
User Interface Software and Technology. 1–12.

[62] David Lindlbauer, Jens Emil Grønbæk, Morten Birk, Kim Halskov, Marc Alexa,
and Jörg Müller. 2016. Combining shape-changing interfaces and spatial aug-
mented reality enables extended object appearance. In Proceedings of the 2016
CHI Conference on Human Factors in Computing Systems. 791–802.

[63] Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay David Bolter. 2004.
DART: a toolkit for rapid design exploration of augmented reality experiences.
In Proceedings of the 17th annual ACM symposium on User interface software and
technology. 197–206.

[64] Michael Nebeling and Katy Madier. 2019. 360proto: Making interactive virtual
reality & augmented reality prototypes from paper. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–13.

[65] Michael Nebeling, Janet Nebeling, Ao Yu, and Rob Rumble. 2018. Protoar:
Rapid physical-digital prototyping of mobile augmented reality applications. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–12.

[66] Michael Nebeling and Maximilian Speicher. 2018. The trouble with augmented
reality/virtual reality authoring tools. In 2018 IEEE international symposium on
mixed and augmented reality adjunct (ISMAR-Adjunct). IEEE, 333–337.

[67] Gary Ng, Joon Gi Shin, Alexander Plopski, Christian Sandor, and Daniel Saakes.
2018. Situated game level editing in augmented reality. In Proceedings of the
Twelfth International Conference on Tangible, Embedded, and Embodied Interac-
tion. 409–418.

[68] Nintendo. 2022. Mario Kart Live. https://mklive.nintendo.com/
14

https://arvr.google.com/ar/
https://mediapipe.dev/
https://tfhub.dev/google/tfjs-model/imagenet/mobilenet_v3_small_100_224/feature_vector/5/default/1
https://tfhub.dev/google/tfjs-model/imagenet/mobilenet_v3_small_100_224/feature_vector/5/default/1
https://www.adobe.com/in/products/aero.html
https://www.adobe.com/in/products/xd.html
https://developer.apple.com/augmented-reality/reality-composer/
https://developer.apple.com/augmented-reality/reality-composer/
https://www.gravitysketch.com/
https://www.invisionapp.com/
https://www.sketch.com/
https://www.sketchup.com/page/homepage
https://www.unrealengine.com/en-US
https://mklive.nintendo.com/

[69] Nintendo. 2022. Nintendo Labo. https://www.nintendo.co.uk/Nintendo-Labo/
Nintendo-Labo-1328637.html

[70] OpenCV. 2022. OpenCV. https://opencv.org/
[71] Youngki Park and Youhyun Shin. 2021. Tooee: A Novel Scratch Extension for

K-12 Big Data and Artificial Intelligence Education Using Text-Based Visual
Blocks. IEEE Access 9 (2021), 149630–149646.

[72] Shwetha Rajaram and Michael Nebeling. 2022. Paper Trail: An Immersive
Authoring System for Augmented Reality Instructional Experiences. In CHI
Conference on Human Factors in Computing Systems. 1–16.

[73] Gonzalo Ramos, Christopher Meek, Patrice Simard, Jina Suh, and Soroush
Ghorashi. 2020. Interactive machine teaching: a human-centered approach
to building machine-learned models. Human–Computer Interaction 35, 5-6
(2020), 413–451.

[74] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[75] Patrick Reipschläger, Severin Engert, and Raimund Dachselt. 2020. Augmented
displays: Seamlessly extending interactive surfaces with head-mounted aug-
mented reality. In Extended Abstracts of the 2020 CHI Conference on Human
Factors in Computing Systems. 1–4.

[76] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115, 3 (2015), 211–252.

[77] Alpay Sabuncuoglu and T Metin Sezgin. 2022. Prototyping Products using
Web-based AI Tools: Designing a Tangible Programming Environment with
Children. In 6th FabLearn Europe/MakeEd Conference 2022. 1–6.

[78] Nazmus Saquib, Rubaiat Habib Kazi, Li-Yi Wei, and Wilmot Li. 2019. Interactive
body-driven graphics for augmented video performance. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems. 1–12.

[79] Hartmut Seichter, Julian Looser, and Mark Billinghurst. 2008. ComposAR: An
intuitive tool for authoring AR applications. In 2008 7th IEEE/ACM International
Symposium on Mixed and Augmented Reality. IEEE, 177–178.

[80] Paden Shorey and Audrey Girouard. 2017. Bendtroller: An exploration of in-
game action mappings with a deformable game controller. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. 1447–1458.

[81] Maximilian Speicher, Katy Lewis, and Michael Nebeling. 2021. Designers, the
stage is yours! medium-fidelity prototyping of augmented & virtual reality inter-
faces with 360theater. Proceedings of the ACM on Human-Computer Interaction
5, EICS (2021), 1–25.

[82] Jürgen Steimle, Andreas Jordt, and Pattie Maes. 2013. Flexpad: highly flexible
bending interactions for projected handheld displays. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. 237–246.

[83] Ryo Suzuki, Rubaiat Habib Kazi, Li-Yi Wei, Stephen DiVerdi, Wilmot Li, and
Daniel Leithinger. 2020. Realitysketch: Embedding responsive graphics and
visualizations in AR through dynamic sketching. In Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology. 166–181.

[84] Three.js. 2022. Ricardo Cabello. https://threejs.org/
[85] Tiffany Tseng, Yumiko Murai, Natalie Freed, Deanna Gelosi, Tung D Ta, and

Yoshihiro Kawahara. 2021. PlushPal: Storytelling with interactive plush toys
and machine learning. In Interaction design and children. 236–245.

[86] Nicolas Villar, Daniel Cletheroe, Greg Saul, Christian Holz, Tim Regan, Oscar
Salandin, Misha Sra, Hui-Shyong Yeo, William Field, and Haiyan Zhang. 2018.
Project zanzibar: A portable and flexible tangible interaction platform. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–13.

[87] James A Walsh, G Stewart Von Itzstein, and Bruce H Thomas. 2013. Tangible
agile mapping: ad-hoc tangible user interaction definition. In AUIC. Citeseer,
3–12.

[88] James A Walsh, Stewart Von Itzstein, and Bruce H Thomas. 2014. Ephemeral
interaction using everyday objects. In Proceedings of the Fifteenth Australasian
User Interface Conference-Volume 150. 29–37.

[89] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Yuanzhi Cao, and Karthik
Ramani. 2021. GesturAR: An Authoring System for Creating Freehand Interac-
tive Augmented Reality Applications. In The 34th Annual ACM Symposium on
User Interface Software and Technology. 552–567.

[90] Tianyi Wang, Xun Qian, Fengming He, Xiyun Hu, Ke Huo, Yuanzhi Cao, and
Karthik Ramani. 2020. CAPturAR: An augmented reality tool for authoring
human-involved context-aware applications. In Proceedings of the 33rd Annual
ACM Symposium on User Interface Software and Technology. 328–341.

[91] Zeyu Wang, Cuong Nguyen, Paul Asente, and Julie Dorsey. 2021. Distanciar:
Authoring site-specific augmented reality experiences for remote environments.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–12.

[92] Matt Whitlock, Jake Mitchell, Nick Pfeufer, Brad Arnot, Ryan Craig, Bryce Wil-
son, Brian Chung, and Danielle Albers Szafir. 2020. MRCAT: In situ prototyping
of interactive AR environments. In International Conference on Human-Computer
Interaction. Springer, 235–255.

[93] Randi Williams, Stephen P Kaputsos, and Cynthia Breazeal. 2021. Teacher
Perspectives on How To Train Your Robot: A Middle School AI and Ethics
Curriculum. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 15678–15686.

[94] Robert Xiao, Chris Harrison, and Scott E Hudson. 2013. WorldKit: rapid and easy
creation of ad-hoc interactive applications on everyday surfaces. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. 879–888.

[95] Hui Ye and Hongbo Fu. 2022. ProGesAR: Mobile AR Prototyping for Prox-
emic and Gestural Interactions with Real-world IoT Enhanced Spaces. In CHI
Conference on Human Factors in Computing Systems. 1–14.

[96] Ya-Ting Yue, Yong-Liang Yang, Gang Ren, and Wenping Wang. 2017. SceneCtrl:
Mixed reality enhancement via efficient scene editing. In Proceedings of the 30th
annual ACM symposium on user interface software and technology. 427–436.

[97] Clement Zheng, Peter Gyory, and Ellen Yi-Luen Do. 2020. Tangible interfaces
with printed paper markers. In Proceedings of the 2020 ACM designing interactive
systems conference. 909–923.

[98] Qian Zhou, Sarah Sykes, Sidney Fels, and Kenrick Kin. 2020. Gripmarks: Using
Hand Grips to Transform In-Hand Objects into Mixed Reality Input. In Pro-
ceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–11.

[99] Zhongyi Zhou and Koji Yatani. 2022. Gesture-aware Interactive Machine Teach-
ing with In-situ Object Annotations. arXiv preprint arXiv:2208.01211 (2022).

[100] Fengyuan Zhu and Tovi Grossman. 2020. Bishare: Exploring bidirectional
interactions between smartphones and head-mounted augmented reality. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems.
1–14.

15

https://www.nintendo.co.uk/Nintendo-Labo/Nintendo-Labo-1328637.html
https://www.nintendo.co.uk/Nintendo-Labo/Nintendo-Labo-1328637.html
https://opencv.org/
https://threejs.org/

	Abstract
	1 Introduction
	2 Related Work
	2.1 AR Prototyping Tools
	2.2 Everyday Objects as User Interfaces
	2.3 Interactive Machine Teaching

	3 Formative Study and Design Goals
	4 Teachable Reality
	4.1 Overview
	4.2 Authoring Workflow

	5 Implementation
	6 Design Space
	6.1 Input: Types of Subject
	6.2 Input: Types of Classification
	6.3 Input: Types of Detectable Properties
	6.4 Output: Types of Virtual Objects
	6.5 Output: Anchored Location
	6.6 Output: Behavior of Virtual Output
	6.7 Applications

	7 Evaluation
	7.1 Usability Study
	7.2 Expert Interview

	8 Limitations and Future Work
	9 Conclusion
	Acknowledgments
	References

