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Figure 1: Visual abstract of our survey and taxonomy of augmented reality interfaces used with robotics, summarizing eight
key dimensions of the design space. All sketches and illustrations are made by the authors (Nicolai Marquardt for Figure 1
and 3 and Ryo Suzuki for Figure 3-15 and are available under CC-BY 4.0 with the credit of original citation. All materials
and an interactive gallery of all cited papers are available at https://ilab.ucalgary.ca/ar-and-robotics/

ABSTRACT
This paper contributes to a taxonomy of augmented reality and
robotics based on a survey of 460 research papers. Augmented and
mixed reality (AR/MR) have emerged as a new way to enhance
human-robot interaction (HRI) and robotic interfaces (e.g., actuated
and shape-changing interfaces). Recently, an increasing number of
studies in HCI, HRI, and robotics have demonstrated how AR en-
ables better interactions between people and robots. However, often
research remains focused on individual explorations and key design
strategies, and research questions are rarely analyzed systemati-
cally. In this paper, we synthesize and categorize this research field
in the following dimensions: 1) approaches to augmenting reality; 2)
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characteristics of robots; 3) purposes and benefits; 4) classification
of presented information; 5) design components and strategies for
visual augmentation; 6) interaction techniques and modalities; 7)
application domains; and 8) evaluation strategies. We formulate key
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in AR and robotics.
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1 INTRODUCTION
As robots become more ubiquitous, designing the best possible
interaction between people and robots is becoming increasingly
important. Traditionally, interaction with robots often relies on the
robot’s internal physical or visual feedback capabilities, such as
robots’ movements [106, 280, 426, 490], gestural motion [81, 186,
321], gaze outputs [22, 28, 202, 307], physical transformation [170],
or visual feedback through lights [34, 60, 403, 427] or small dis-
plays [129, 172, 446]. However, such modalities have several key
limitations. For example, the robot’s form factor cannot be easily
modified on demand, thus it is often difficult to provide expres-
sive physical feedback that goes beyond internal capabilities [450].
While visual feedback such as lights or displays can be more flexible,
the expression of such visual outputs is still bound to the fixed phys-
ical design of the robot. For example, it can be challenging to present
expressive information given the fixed size of a small display, where
it cannot show the data or information associated with the physical
space that is situated outside the screen. Augmented reality (AR)
interfaces promise to address these challenges, as AR enables us to
design expressive visual feedback without many of the constraints
of physical reality. In addition, AR can present visual feedback in
one’s line of sight, tightly coupled with the physical interaction
space, which reduces the user’s cognitive load when switching the
context and attention between the robot and an external display.
Recent advances in AR opened up exciting new opportunities for
human-robot interaction research, and over the last decades, an
increasing number of works have started investigating how AR can
be integrated into robotics to augment their inherent visual and
physical output capabilities. However, often these research projects
are individual explorations, and key design strategies, common
practices, and open research questions in AR and robotics research
are rarely analyzed systematically, especially from an interaction
design perspective. With the recent proliferation of this research
field, we see a need to synthesize the existing works to facilitate
further advances in both HCI and robotics communities.

In this paper, we review a corpus of 460 papers to synthesize the
taxonomy for AR and robotics research. In particular, we synthe-
sized the research field into the following design space dimensions
(with a brief visual summary in Figure 1): 1) approaches to aug-
menting reality for HRI; 2) characteristics of augmented robots;
3) purposes and benefits of the use of AR; 4) classification of pre-
sented information; 5) design components and strategies for visual
augmentation; 6) interaction techniques and modalities; 7) applica-
tion domains; and 8) evaluation strategies. Our goal is to provide
a common ground and understanding for researchers in the field,
which both includes AR-enhanced human-robot interaction [151]
and robotic user interfaces [37, 218] research (such as actuated tangi-
ble [349] and shape-changing interfaces [16, 87, 359]). We envision
this paper can help researchers situate their work within the large
design space and explore novel interfaces for AR-enhanced human-
robot interaction (AR-HRI). Furthermore, our taxonomy and de-
tailed design space dimensions (together with the comprehensive
index linking to related work) can help readers to more rapidly
find practical AR-HRI techniques, which they can then use, iterate
and evolve into their own future designs. Finally, we formulate

open research questions, challenges, and opportunities to guide
and stimulate the research communities of HCI, HRI, and robotics.

2 SCOPE, CONTRIBUTIONS, AND
METHODOLOGY

2.1 Scope and Definitions
The topic covered by this paper is “robotic systems that utilize AR
for interaction”. In this section, we describe this scope in more detail
and clarify what is included and what is not.

2.1.1 Human-Robot Interaction and Robotic Interfaces. “Robotic sys-
tems” could take different forms—from traditional industrial robots
to self-driving cars or actuated user interfaces. In this paper, we
do not limit the scope of robots and include any type of robotic or
actuated systems that are designed to interact with people. More
specifically, our paper also covers robotic interface [37, 218] research.
Here, robotic interfaces refer to interfaces that use robots and/or
actuated systems as a medium for human-computer interaction 1.
This includes actuated tangible interfaces [349], adaptive environ-
ments [154, 399], swarm user interfaces [235], and shape-changing
interfaces [16, 87, 359].

2.1.2 AR vs VR. Among HRI and robotic interface research, we
specifically focus on AR, but not on VR. In the robotics literature,
VR has been used for many different purposes, such as interactive
simulation [173, 276, 277] or haptic environments [291, 421, 449].
However, our focus is on visual augmentation in the real world
to enhance real robots in the physical space, thus we specifically
investigate systems that use AR for robotics.

2.1.3 What is AR. The definition of AR can also vary based on the
context [405]. For example, Azuma defines AR as “systems that have
the following three characteristics: 1) combines real and virtual, 2)
interactive in real time, 3) registered in 3D” [32]. Milgram and Kishino
also describe this with the reality-virtuality continuum [293]. More
broadly, Bimber and Rasker [41] also discuss spatial augmented
reality (SAR) as one of the categories in AR. In this paper, we
take AR as a broader scope and include any systems that augment
physical objects or surroundings environments in the real world,
regardless of the technology used.

2.2 Contributions
Augmented reality in the field of robotics has been the scope of
other related review papers (e.g., [100, 155, 281, 356]) that our tax-
onomy expands upon. Most of these earlier papers reviewed key
application use cases in the research field. For example, Makhataeva
and Varol surveyed example applications of AR for robotics in a
5-year timeframe [281] and Qian et al. reviewed AR applications
for robotic surgery in particular [356]. From the HRI perspective,
Green et al. provide a literature review research for collaborative
HRI [155], which focuses in particular on collaboration through
the means of AR technologies. And more recently, human-robot
interaction and VR/MR/AR (VAM-HRI) have also been the topic of
workshops [466].

1We only cover internally actuated systems but do not cover externally actuated
systems, which actuate passive objects with external force [298, 331, 339, 422].
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Figure 2: Examples of augmented reality and robotics research: A) collaborative programming [33], B) augmented arms for
social robots [158], C) drone teleoperation [171], D) a drone-mounted projector [58], E) projected background for data phys-
icalization [425], F) drone navigation for invisible areas [114], G) trajectory visualization [450], H) motion intent for pedes-
trian [458], I) a holographic avatar for telepresence robots [198], J) surface augmentation for shape displays [243].

Our taxonomy builds on and extends beyond these earlier re-
views. In particular, we provide the following contributions. First,
we present a taxonomy with a novel set of design space dimen-
sions, providing a holistic view based on the different dimensions
unifying the design space, with a focus on interaction and visual
augmentation design perspectives. Second, our paper also systemati-
cally covers a broader scope of HCI andHRI literature, including
robotic, actuated, and shape-changing user interfaces. This field is
increasingly popular in the field of HCI, [16, 87, 349, 359] but not
well explored in terms of the combination with AR. By incorporat-
ing this research, our paper provides a more comprehensive view
of designing novel AR/MR interactions for robotic systems. Third,
we also discuss open research questions and opportunities that
facilitate further research in this field. We believe that our taxon-
omy—with the design classifications and their insights, and the
articulation of open research questions—will be invaluable tools
for providing a common ground and understanding when designing
AR/MR interfaces for HRI. This will help researchers identify or
explore novel interactions. Finally, we also compiled a large cor-
pus of research literature using our taxonomy as an interactive
website 2, which can provide a more content-rich, up-to-date, and
extensible literature review. Inspired by similar attempts in personal
fabrication [5, 36], data physicalization [1, 192], and material-based
shape-changing interactions [6, 353], our website, along with this
paper, could provide similar benefits to the broader community of
both researchers and practitioners.

2.3 Methodology
2.3.1 Dataset and Inclusion Criteria. To collect a representative set
of AR and robotics papers, we conducted a systematic search in the
ACM Digital Library, IEEE Xplore, MDPI, Springer, and Elsevier.
Our search terms include the combination of “augmented reality”
AND “robot” in the title and/or author keywords since 2000. We also
searched for synonyms of each keyword, such as “mixed reality”,
“AR”, “MR” for augmented reality and “robotic”, “actuated”, “shape-
changing” for robot. This gave us a total of 925 papers after removing

2https://ilab.ucalgary.ca/ar-and-robotics/

duplicates. Then, four authors individually looked at each paper
to exclude out-of-scope papers, which, for example, only focus on
AR-based tracking but not on visual augmentation, or were concept
or position papers, etc. After this process, we obtained 396 papers
in total. To complement this keyword search, we also identified an
additional relevant 64 papers by leveraging the authors’ expertise
in HCI, HRI, and robotic interfaces. By merging these papers, we
finally selected a corpus of 460 papers for our literature review.

While our systematic compilation of this corpus provides an
in-depth view into the research space, this set can not be a com-
plete or exhaustive list in this domain. The boundaries and scope
of our corpus may not be clear cut, and as with any selection of
papers, there were many papers right at the boundaries of our
inclusion/exclusion criteria. Nevertheless, our focus was on the de-
velopment of a taxonomy and this corpus serves as a representative
subset of the most relevant papers. We aim to address this inher-
ent limitation of any taxonomy by making our coding and dataset
open-source, available for others to iterate and expand upon.

2.3.2 Analysis and Synthesis. The dataset was analyzed through a
multi-step process. One of the authors conducted open-coding on a
small subset of our sample to identify a first approximation of the
dimensions and categories within the design space. Next, all authors
reflected upon the initial design space classification to discuss the
consistency and comprehensiveness of the categorization methods,
where then categories were merged, expanded, and removed. Next,
three other co-authors performed systematic coding with individual
tagging for the categorization of the complete dataset. Finally, we
reflected upon the individual tagging to resolve the discrepancies
to obtain the final coding results.

In the following sections, we present our results and findings of
this classification by using color-coded text and figures. We provide
a list of key citations directly within the figures, with the goal of
facilitating the lookup of relevant papers within each dimension
and all of the corresponding sub-categories. Furthermore, in the
appendix of this paper we included several tables with a complete
compilation of all citations and count of the papers in our corpus
that fall within each of the categories and sub-categories of the

https://ilab.ucalgary.ca/ar-and-robotics/
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Figure 3: Approaches to augmenting reality in robotics.

design space—which we hope will help researchers to more easily
find relevant papers (e.g., finding all papers that use AR for "im-
proving safety" with robots, "augment surroundings" of robots, or
provide visual feedback of "paths and trajectories").

3 APPROACHES TO AUGMENTING REALITY
IN ROBOTICS

In this section, we discuss the different approaches to augmenting
reality in robotics (Figure 3). To classify how to augment reality, we
propose to categorize based on two dimensions: First, we categorize
the approaches based on the placement of the augmented real-
ity hardware (i.e., where the optical path is overridden with digital
information). For our purpose, we adopt and extend Bimber and
Raskar’s [41] classification in the context of robotics research. Here,
we propose three different locations: 1) on-body, 2) on-environment,
and 3) on-robot. Second, we classify based on the target location of
visual augmentation, i.e., where is augmented. We can categorize
this based on 1) augmenting robots or 2) augmenting surroundings.
Given these two dimensions, we can map the existing works into
the design space (Figure 3 Right). Walker et al. [450] include aug-
menting user interface (UI) as another category. Since the research
that has been done in this area can be roughly considered augment-
ing the environment, we decided to not include it as a separate
category.

Approach-1. Augment Robots: AR is used to augment robots
themselves by overlaying or anchoring additional information on
top of the robots (Figure 3 Top).
—On-Body: The first category augments robots through on-bodyAR
devices. This can be either 1) head-mounted displays (HMD) [197,
372, 450] or 2)mobile AR interfaces [76, 209]. For example, VRoom [197,
198] augments the telepresence robot’s appearance by overlaying a
remote user. Similarly, Young et al. [481] demonstrated adding an
animated face onto a Roomba robot to show an expressive emotion
on mobile AR devices.
— On-Environment: The second category augments robots with
devices embedded in the surrounding environment. Technologies

often used with this approach include 1) environment-attached pro-
jectors [21] or 2) see-through displays [243]. For example, Drone-
SAR [96] also shows how we can augment the drone itself with pro-
jectionmapping. Showing the overlaid information on top of robotic
interfaces can also fall into this category. Similarly, shape-shifting
walls [431] or handheld shape-changing interfaces [258, 374] are
also directly augmented with the overlaid animation of information.
— On-Robot: In the third category, the robots augment their own
appearance, which is unique in AR and robotics research, compared
to Bimber and Raskar’s taxonomy [41]. For example, Furhat [14] an-
imates a face with a back-projected robot head, so that the robot can
augment its own face without an external AR device. The common
technologies used are robot-attached projectors [418, 436], which
augments itself by using its own body as a screen. Alternatively,
robot-attached displays can also fall into this category [445, 475].

Approach-2. Augment Surroundings: Alternatively, AR is also
used to augment the surroundings of the robots. Here, the sur-
roundings include 1) surrounding mid-air 3D space, 2) surrounding
physical objects, or 3) surrounding physical environments, such as
wall, floor, ceiling, etc (Figure 3 Bottom).
— On-Body: Similarly, this category augments robots’ surroundings
through 1) HMD [372, 450], 2) mobile AR devices [76], or 3) hand-
held projector [177]. One benefit of HMD or mobile AR devices is an
expressive rendering capability enabled by leveraging 3D graphics
and spatial scene understanding. For example, Drone Augmented
Human Vision [114] uses HMD-based AR to change the appearance
of the wall for remote control of drones. RoMA [341] uses HMD
for overlaying the interactive 3D models on a robotic 3D printer.
— On-Environment: In contrast to HMD or handheld devices, the
on-environment approach allows much easier ways to share the
AR experiences with co-located users. Augmentation can be done
through 1) projection mapping [425] or 2) surface displays [163].
For example, Touch and Toys [163] leverage a large surface dis-
play to show additional information in the surroundings of robots.
Andersen et al. [21] investigates the use of projection mapping
to highlight or augment surrounding objects to communicate the
robot’s intentions. While it allows the shared content for multiple
people, the drawback of this approach is a fixed location due to the
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Figure 4: Characteristics of augmented robots.

requirements of installed-equipment, which may limit the flexibility
and mobility for outdoor scenarios.
—On-Robot: In this category, the robots themselves augment the sur-
rounding environments. We identified that the common approach
is to utilize the robot-attached projector to augment surrounding
physical environments [210, 382]. For example, Kasetani et al. [210]
attach a projector to a mobile robot to make a self-propelled projec-
tor for ubiquitous displays. Moreover, DisplayDrone [382] shows
a projected image onto the surrounding walls for on-demand dis-
plays. The main benefit of this approach is that the user does not
require any on-body or environment-instrumented devices, thus it
enables mobile, flexible, and deployable experiences for different
situations.

4 CHARACTERISTICS OF AUGMENTED
ROBOTS

Next, we classify research projects based on the characteristics
of augmented robots. Possible design space dimensions span 1)
the form factor of robots, 2) the relationship between the users
and robots, 3) size and scale of the robots, and 4) proximity for
interactions (Figure 4).

Dimension-1. Form Factor: This category includes the types of
robots that have been investigated in the literature. The form factor
of robots include: robotic arms [341, 354], drones [58, 171], mobile
robots [197, 468], humanoid robots [254, 439], vehicles [300, 320],
actuated objects [159, 443], the combination of multiple form fac-
tors [169], and other types such as fabrication machines [304, 476].

Dimension-2. Relationship: Research also explores different people-
to-robot relationships. In the most common case, one person inter-
acts with a single robot (1:1), but the existing research also explores
a situation where one person interacts with multiple robots (1:m).
AR for swarm robots falls into this category [176, 235, 328, 425].
On the other hand, collaborative robots require multiple people to
interact with a single robotic interface (n:1) [430] or a swarm of
robots (n:m) [328].

Dimension-3. Scale: Augmented robots are of different sizes,
along a spectrum from small to large: from a small handheld-scale
which can be grasped with a single hand [425], tabletop-scale which
can fit onto the table [257], and body-scale which is about the same
size as human bodies like industrial robotic arms [27, 285]. Large-
scale robots are possible, such as vehicles [2, 7, 320] or even building
construction robots.

Dimension-4. Proximity: Proximity refers to the distance be-
tween the user and robots when interaction happens. Interactions
can vary across the dimension of proximity, from near to far. The
proximity can be classified as the spectrum between 1) co-located
or 2) remote. The proximity of the robots can influence whether the
robots are directly touchable [227, 316] or situated in distance [96].
It can also affect how to augment reality, based on whether the
robots are visible to the user [171] or out-of-sight for remote inter-
action [114].

5 PURPOSES AND BENEFITS OF VISUAL
AUGMENTATION

Visual augmentation has many benefits for effective human-robot
interaction. In this section, we categorize the purposes of why vi-
sual augmentation is used in robotics research. On a higher level,
purposes and benefits can be largely categorized as 1) for program-
ming and control, and 2) for understanding, interpretation, and
communications (Figure 5).

Purpose-1. Facilitate Programming: First, the AR interface pro-
vides a powerful assistant to facilitate programming robots [33].
One way to facilitate the programming is to simulate programmed
behaviors [162], which has been explored since early 1990s [32, 219,
294]. For example, GhostAR [51] shows the trajectory of robots to
help the user see how the robots will behave. Such visual simulation
helps the user to program the robots in industry applications [358]
or home automation [263]. Another aspect of programming assis-
tance is to directly map with the real world. Robot programming
often involves interaction with real-world objects, and going back
and forth between physical and virtual worlds is tedious and time-
consuming. AR interfaces allow the user to directly indicate objects
or locations in the physical world. For example, Gong et al. [150] uti-
lizes projection-based AR to support the programming of grasping
tasks.

Purpose-2. Support Real-time Control and Navigation: Simi-
lar to the previous category, AR interfaces facilitate the control, nav-
igation, and teleoperation of the robot. In contrast to programming
the behaviors, this category focuses on the real-time operation of
the robot, either remote or co-located. For example, exTouch [209]
and PinpointFly [76] allows the user to interactively control robots
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Collaborative Robot Programming [33] AR-supported Drone Navigation [494] Workspace Visualization [326] Robot Arm Motion Intent [372] AR Arms for Social Expression [158]
[12, 24, 33, 51, 53, 69, 105, 124, 131, 133, 136, 137, 

140, 150, 153, 162, 201, 206, 207, 232, 261–263, 270, 
275, 289, 313, 324–326, 358, 379, 407, 416, 496]

[4, 15, 25, 27, 58, 59, 76, 86, 114, 133, 163, 169, 171, 
177, 191, 209, 212, 310, 332, 404, 451, 469, 482, 494]

[43, 56, 64, 68, 182, 200, 282, 326] [21, 29, 64, 89, 141, 188, 223, 241, 300, 305, 320, 361, 
363, 367, 372, 375, 429, 440, 445, 450, 458, 464, 476, 479]

[3, 14, 91, 96, 112, 127, 158, 159, 180, 189, 197, 198, 
210, 221, 242, 243, 257, 258, 261, 328, 340, 346, 369, 
370, 382, 401, 418, 425, 431, 436, 443, 467, 475, 481]

Figure 5: Purposes and benefits of visual augmentation.

with the visual feedback on a touch screen. AR interfaces also sup-
port showing additional information or parameters related to the
navigation and control. For example, a world-in-miniature of the
physical world [4] or real-time camera view [171] is used to support
remote navigation of drones.

Purpose-3. Improve Safety: By leveraging visual augmentation,
AR/MR interfaces can improve safety awareness when interacting
with robots. For example, Safety Aura Visualization [282] explores
spatial color mapping to indicate the safe and dangerous zones.
Virtual barriers in AR [68, 182] help the user avoid unexpected
collisions with the robots.

Purpose-4. Communicate Intent: AR interfaces can also help
to communicate the robot’s intention to the user through spatial
information. For example, Walker et al. show that the AR repre-
sentations can better communicate the drone’s intent through the
experiments using three different designs [450]. Similarly, Rosen et
al. reveal that the AR visualization can better present the robotic
arm’s intent through the spatial trajectory, compared to the tradi-
tional interfaces [372]. AR interfaces can be also used to indicate
the state of robot manipulation such as indicating warning or com-
pletion of the task [21] or communicating intent with passersby or
pedestrians for wheelchairs [458] or self-driving cars [320].

Purpose-5. Increase the Expressiveness: Finally, AR can also be
used to augment the robot’s expression [3]. For example, Groechel
et al. [158] uses an AR view to provide virtual arms to a social
robot (e.g., Kuri Robot) to enhance the social expressions when
communicating with the users. Examples include adding facial ex-
pressions [481], overlaying remote users [198, 401], and interactive
content [96] onto robots. AR is a helpful medium to increase the
expressiveness of shape-changing interfaces [258]. For example,
Sublimate [243] or inFORM [127] uses see-through display or pro-
jection mapping to provide a virtual surface on a shape display.

6 CLASSIFICATION OF PRESENTED
INFORMATION

This section summarizes types of information presented in AR
interfaces. The categories we identified include 1) robot’s internal
information, 2) external information about the environment, 3) plan
and activity, and 4) supplemental content (Figure 6).

Information-1. Robot’s Internal Information: The first cate-
gory is the robot’s internal information. This can include 1) robot’s
internal status, 2) robot’s software and hardware condition, 3) ro-
bot’s internal functionality and capability. Examples include the
robot’s emotional state for social interaction [158, 481], a warning
sign when the user’s program is wrong [262], the drone’s current
information such as altitude, flight mode, flight status, and dilution
of precision [15, 332], and the robot’s reachable region to indicate
safe and dangerous zones [282]. Showing the robot’s hardware com-
ponents is also included in this category. For example, showing or
highlighting physical parts of the robot for maintenance [285, 302]
is also classified as this category.

Information-2. External Information about the Environment:
Another category is external information about the environment.
This includes 1) sensor data from the internal or external sensors,
2) camera or video feed, 3) information about external objects, 4)
depth map or 3D reconstructed scene of the environment. Exam-
ples include camera feeds for remote drone operations [171], the
world in miniature of the environment [4], sensor stream data of
the environment [15], visualization of obstacles [263], a local cost
map for search task [305], a 3D reconstructed view of the envi-
ronment [114, 332], a warning sign projected onto an object that
indicates the robot’s intention [21], visual feedback about the lo-
calization of the robot [468], and position and label of objects for
grasping tasks [153]. Such embedded external information improves
the situation awareness and comprehension of the task, especially
for real-time control and navigation.

Information-3. Plan and Activity: The previous two categories
focus on the current information, but plan and activity are related
to future information about the robot’s behavior. This includes 1)
a plan of the robot’s motion and behavior, 2) simulation results of
the programmed behavior, 3) visualization of a target and goal, 4)
progress of the current task. Examples include the future trajectory
of the drone [450], the direction of themobile robots or vehicles [188,
320], a highlight of the object the robot is about to grasp [33], the
location of the robot’s target position [482], and a simulation of the
programmed robotic arm’s motion and behavior [372]. This type of
information helps the user better understand and expect the robot’s
behavior and intention.

Information-4. Supplemental Content: Finally, AR is also used
to show supplemental content for expressive interaction, such as
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Internal Status [479] Robot’s Capability [66] Object Status [21] Sensor/Camera Data [377] Plan and Target [136] Simulation [76] Interactive Content [386] Virtual Background [8]

[13, 15, 18, 19, 66, 86, 98, 101, 124, 158, 195, 
262, 282, 285, 302, 324, 332, 375, 474, 479, 481]

[4, 15, 21, 24, 38, 47, 79, 84, 89, 102, 114, 143, 149, 150, 153, 
171, 174, 178, 182, 184, 185, 201, 216, 230, 232, 241, 263, 265, 266, 269, 

274, 289, 295, 305, 314, 332, 357, 377, 406, 464, 468, 486, 496]

[27, 29, 33, 51, 52, 67, 76, 105, 118, 130, 136, 141, 162, 188, 191, 
206, 221, 270, 275, 284, 285, 305, 319, 320, 363, 372, 450, 467, 470, 

476, 482, 494]

[8, 27, 49, 58, 65, 91, 93, 112, 116, 117, 127, 128, 142, 159, 168, 197, 207, 243– 245, 
258, 317, 337, 338, 346, 368, 369, 374, 377, 382, 386, 

393, 401, 414, 417, 418, 425, 429–431, 436, 475]

Figure 6: Types of presented information

showing interactive content on robots or background images for
their surroundings. Examples include a holographic remote user
for remote collaboration and telepresence [197, 401], a visual scene
for games and entertainment [346, 369], an overlaid animation or
visual content for shape-changing interfaces [243, 258], showing
the menu for available actions [27, 58], and aided color coding or
background for dynamic data physicalization [127, 425].

7 DESIGN COMPONENTS AND STRATEGIES
FOR VISUAL AUGMENTATION

Different from the previous section that discusses what to show
in AR, this section focuses on how to show AR content. To this
end, we classify common design practices across the existing vi-
sual augmentation examples. At a higher level, we identified the
following design strategies and components: 1) UIs and widgets, 2)
spatial references and visualizations, and 3) embedded visual effects
(Figure 7).

Design-1. UIs andWidgets: UIs andwidgets are a common design
practice in AR for robotics to help the user see, understand, and
interact with the information related to robots (Figure 7 Top).
— Menus: The menu is often used in mixed reality interfaces for
human-robot interaction [140, 326, 416]. The menu helps the user
to see and select the available options [325]. The user can also
control or communicate with robots through a menu and gestural
interaction [58].
— Information Panels: Information panels show the robot’s internal
or external status as floating windows [443] with either textual
or visual representations. Textual information can be effective to
present precise information such as the current altitude of the
drone [15] or the measured length [96]. More complex visual infor-
mation can also shown such as a network graph of the current task
and program [262].
— Labels and Annotations: Labels and annotations are used to show
information about the object. Also, they are used to annotate ob-
jects [96].
— Controls and Handles: Controls and handles are another user
interface example. They allow the user to control robots through a
virtual handle [169]. Also, AR can show the control value surround-
ing the robot [340].
—Monitors and Displays: Monitor or displays help the user to situate
themselves in the remote environment [445]. Camera monitors
allow the user to better navigate the drone for inspection or aerial

photography tasks [171]. The camera feed can be also combined
with the real-time 3D reconstruction [332]. In contrast, monitor or
display are also used to display spatially registered content in the
surrounding environment [382] or on top of the robot [443]

Design-2. Spatial References and Visualizations: Spatial ref-
erences and visualizations are a technique used to overlay data
spatially. Similar to embedded visualizations [463], this design can
directly embed data on top of their corresponding physical refer-
ents. The representation can be from a simple graphical element,
such as points (0D), paths (1D), or areas (2D/3D), to more complex
visualizations like color maps (Figure 7 Middle).
—Points and Locations: Points are used to visualize a specific location
in AR. These points can be used to highlight a landmark [136], target
location [482], or way point [451], which is associated to the geo-
spatial information. Additionally, points can be used as a control or
anchor point to manipulate virtual objects or boundaries [325].
—Paths and Trajectories: Similarly, paths and trajectories are another
common approaches to represent spatial references as lines [358,
407, 450]. For example, paths are commonly used to visualize the
expected behaviors for real-time or programmed control [75, 76,
494]. By combining the interactive points, the user can modify these
paths by adding, editing, or deleting the way points [451].
—Areas and Boundaries: Areas and boundaries are used to highlight
specific regions of the physical environment. They can visualize
a virtual bounding box for safety purposes [68, 182] or highlight
a region to show the robot’s intent [21, 105]. Alternatively, the
areas and boundaries are also visualized as a group of objects or
robots [191]. Some research projects also demonstrated the use
of interactive sketching for specifying the boundaries in home
automation [191, 263].
— Other Visualizations: Spatial visualizations can also take more
complex and expressive forms. For example, spatial color/heat
map visualization can indicate the safe and danger zones in the
workspace, based on the robot’s reachable areas [282]. Alternatively,
a force map visualizes the field of force to provide visual affordance
for the robot’s control [176, 177, 212].

Design-3. Embedded Visual Effects: Embedded visual effects
refer to graphical content directly embedded in the real world.
In contrast to spatial visualization, embedded visualization does
not need to encode data. Common embedded visual effects are 1)
anthropomorphic effects, 2) virtual replica, and 3) texture mapping
of physical objects (Figure 7 Bottom).
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[27, 33, 58, 105, 140, 325, 326, 340, 385, 407, 416]

[18, 19, 111, 135, 136, 143, 325, 358, 373, 435, 451, 468, 482]

[15, 96, 145, 185, 262, 332, 443] [96, 188, 302, 443, 492] [130, 163, 169, 206, 340, 416, 469] [59, 96, 171, 317, 332, 354, 382, 418, 443, 445, 475]

[59, 75, 76, 103–105, 136, 160, 209, 229, 270, 336, 372, 407, 450, 451, 458, 467, 476, 494] [21, 33, 68, 105, 115, 133, 145, 153, 182, 191, 263, 302, 326, 407] [15, 27, 59, 136, 176, 177, 212, 262, 282, 305, 322, 332, 494]

[3, 14, 23, 158, 180, 197, 198, 242, 401, 436, 450, 472, 473, 481] [4, 25, 27, 33, 51, 76, 114, 153, 163, 169, 182, 209, 270, 285, 302, 326, 332, 354, 358, 372, 407, 450, 451, 494] [116, 127, 159, 175, 193, 243–245, 258, 308, 328, 340, 369, 370, 374, 425, 429, 431]

Connections and Relationships [136, 206]

Figure 7: Design components and strategies for visual augmentation

—Anthropomorphic Effects: Anthropomorphic effects are visual aug-
mentations that render human-inspired graphics. Such design can
add an interactive effect of 1) a robot’s body [3], such as arms [158]
and eyes [450], 2) faces and facial expressions [14, 180, 481], 3) a
human-avatar [198, 401, 472], or 4) character animation [23, 473],
on top of the robots. For example, it can augment the robot’s face
by animated facial expression with realistic images [14] or cartoon-
like animation [481], which can improve the social expression of
the robots [158] and engage more interaction [23, 473]. In addition
to augmenting a robot’s body, it can also show the image of a real
person to facilitate remote communication [197, 401, 436, 472].
— Virtual Replica and Ghost Effects: A virtual replica is a 3D ren-
dering of robots, objects, or external environments. By combining
with spatial references, a virtual replica is helpful to visualize the
simulated behaviors [76, 169, 372, 451, 494]. By rendering multiple
virtual replicas, the system can also show the ghost effect with a
series of semi-transparent replica [51, 372]. In addition, a replica
of external objects or environments is also used to facilitate co-
located programming [25, 33] or real-time navigation in the hidden
space [114]. Also, a miniaturized replica of the environment (i.e.,
the world in miniature) helps drone navigation [4].
— Texture Mapping Effects based on Shape: Finally, texture mapping
overlays interactive content onto physical objects to increase expres-
siveness. This technique is often used to enhance shape-changing
interfaces and displays [127, 175, 308, 374], such as overlaying ter-
rain [244, 245], landscape [116], animated game elements [258, 431],
colored texture [308], or NURBS (Non-Uniform Rational Basis
Spline) surface effects [243]. Texture effects can also augment the

surrounding background of the robot. For example, by overlaying
the background texture onto the surrounding walls or surfaces, AR
can contextualize the robots with the background of an immersive
educational game [369, 370], a visual map [340, 425, 431], or a solar
system [328].

8 INTERACTIONS

Dimension-1. Level of Interactivity: In this section, we survey
the interactions in AR and robotics research. The first dimension is
level of interactivity (Figure 8).

Level of InteractivityLow High

[158, 372, 382, 418, 436, 450, 481] [38, 357, 414, 458] [51, 96, 171, 191, 325, 346, 429, 451] [104, 127, 163, 243, 258, 316, 328, 354]

Only Output Implicit Explicit and Indirect Explicit and Direct
Programmed Visualization [450] Proximity with Passerby [458] Body Gesture and Motion [346] Direct Physical Manipulation [316]

Figure 8: Level of interactivity

— No Interaction (Only Output): In this category, the system uses
AR solely for visual output and disregards user input [158, 261, 332,
372, 382, 418, 436, 450, 481]. Examples include visualization of the
robot’s motion or capability [282, 372, 450], but these systems often
focus on visual outputs, independent of the user’s action.
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[163, 243, 258, 328, 340, 354, 369, 
374, 425, 443, 472, 473]
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163, 169, 201, 209, 212, 285, 407]
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[15, 96, 171, 177, 191, 

332, 341, 370, 451, 467]
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[3, 27, 33, 58, 59, 105, 114, 262, 

270, 320, 325, 326, 358, 401]

Gaze-driven Navigation [482]
[27, 28, 33, 38, 67, 114, 262, 300,

 320, 325, 336, 358, 429, 482]

Voice-based Control [184]
[14, 27, 54, 67, 108, 182, 184, 197, 
239, 336, 354, 367, 404, 406, 439]

Collision Avoidance [200]
[200, 229, 305, 350, 
430, 431, 458, 467]

Touch Controller Gesture Gaze Voice Proximity

Figure 9: Interaction modalities and techniques.

— Implicit Interaction: Implicit interaction takes the user’s implicit
motion as input, such as the user’s position or proximity to the
robot [458]. Sometimes, the user may not necessarily realize the
association between their actions and effects, but the robots respond
implicitly to the users’ physical movements (e.g., approaching to
the robot).
— Explicit and Indirect Manipulation: Indirect manipulation is the
user’s input through remote manipulation without any physical
contact. The interaction can take place through pointing out ob-
jects [325], selecting and drawing [191], or explicitly determining
actions with body motion (e.g., changing the setting in a virtual
menu [58])
—Explicit and Direct Physical Manipulation: Finally, this category in-
volves the user’s direct touch inputs with their hands or bodies. The
user can physically interact with the robots through embodied body
interaction [369]. Several interaction techniques utilize the defor-
mation of objects or robots [243], grasping and manipulating [163],
or physically demonstrating [270].

Dimension-2. Interaction Modalities: Next, we synthesize cate-
gories based on the interaction modalities (Figure 9).
—Tangible: The user can interact with robots by changing the shape
or by physically deforming the object [243, 258], moving robots
by grasping and moving tangible objects [163, 340], or controlling
robots by grasping and manipulating robots themselves [328].
— Touch: Touch interactions often involve the touch screen of mo-
biles, tablets, or other interactive surfaces. The user can interact
with robots by dragging or drawing on a tablet [76, 209, 212], touch-
ing and pointing the target position [163], and manipulating virtual
menus on a smartphone [53]. The touch interaction is particularly
useful when requiring precise input for controlling [153, 169] or
programming the robot’s motion [136, 407].
— Pointer and Controller: The pointer and controller allow the
user to manipulate robots through spatial interaction or device
action. Since the controller provides tactile feedback, it reduces the
effort to manipulate robots [171]. While many controller inputs
are explicit interactions [191, 467], the user can also implicitly
communicate with robots, such as designing a 3D virtual object
with the pointer [341].
— Spatial Gesture: Spatial gestures are a common interaction modal-
ity for HMD-based interfaces [27, 33, 58, 59, 114, 262, 320, 326].
With these kinds of gestures, users can manipulate virtual way
points [325, 358] or operate robots with a virtual menu [58]. The

spatial gesture is also used to implicitly manipulate swarm robots
through remote interaction [401].
— Gaze: Gaze is often used to accompany the spatial gesture [27,
114, 262, 300, 325, 358, 482], such as when performing menu selec-
tion [27]. But, some works investigate the gaze itself to control the
robot by pointing out the location in 3D space [28].
— Voice: Some research leveraged voice input to execute commands
for the robot operation [27, 182, 197, 354], especially in co-located
settings.
— Proximity: Finally, proximity is used as an implicit form of inter-
action to communicate with robots [14, 182, 305]. For example, the
AR’s trajectory will be updated to show the robot’s intent when the
a passerby approaches the robot [458]. Also, the shape-shifting wall
can change the content on the robot based on the user’s behavior
and position [431].

9 APPLICATION DOMAINS
We identified a range of different application domains in AR and
robotics. Figure 10 summarizes the each category and the list of
related papers. We classified the existing works into the following
high-level application-type clusters: 1) domestic and everyday use, 2)
industry applications, 3) entertainment, 4) education and training, 5)
social interaction, 6) design and creative tasks, 7) medical and health,
8) telepresence and remote collaboration, 9) mobility and transporta-
tion, 10) search and rescue, 11) robots for workspaces, and 12) data
physicalization.

Detailed lists of application use cases within each of these cat-
egories can be found in Figure 10, as well as appendix, including
detailed lists of references we identified. The largest category is
industry. For example, industry application includes manufacturing,
assembly, maintenance, and factory automation. In many of these
cases, AR can help the user to reduce the assembly or maintenance
workload or program the robots for automation. Another large cate-
gory we found emerging is domestic and everyday use scenarios. For
example, AR is used to program robots for household tasks. Also,
there are some other sub-categories, such as photography, tour
guide, advertisement, and wearable robots. Games and entertain-
ment are popular with robotic user interfaces. In these examples,
the combination of robots and AR is used to provide an immersive
game experience, or used for storytelling, music, or museums. Fig-
ure 10 suggests that there are less explored application domains,
which can be investigated in the future, which include design and
creative tasks, remote collaboration, and workspace applications.
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Domestic and Everyday Use (35) Industry (166) Entertainment (32) Education and Training (22)

Social Interaction (21) Design and Creativity Tasks (11) Medical and Health (36) Remote Collaboration (6)

Mobility and Transportation (12) Search and Rescue (35) Workspace (9) Data Physicalization (12)

Manufacturing: joint assembly [21, 30, 43, 
138, 289], grasping and manipulation [[67, 79, 
153, 185, 379], tutorial and simulation [52], 
welding [313] Maintenance: maintenance of 
robots [144, 252], remote repair [31, 48], per-
formance monitoring [126, 128], setup and 
calibration [352], debugging [373]  Safety 
and Inspection: nuclear detection [15], 
drone monitoring [76, 114, 171, 482], safety 
feature [44, 66, 104, 379, 385], ground moni-
toring [211, 269, 479] Automation and Tele-
operation: interactive programming inter-
face [118, 131, 136, 177, 270, 288, 324, 496] 
Logistics: package delivery [265] Aerospace: 
surface exploration [54], teleoperated manip-
ulator [310], spacecraft maintenance [470]

Household Task: authoring home automa-
tion [53, 111, 135, 163, 177, 191, 212, 228, 263, 
387], item movement and de- livery [76, 108, 
209, 265], multi-purpose table [430] Photog-
raphy: drone photography [114, 171], Adver-
tisement: mid-air advertisement [317, 382, 
418, 475] Wearables Interactive Devices: 
haptic interaction [443], fog screens [418], 
head-worn projector for sharable AR scenes 
[168] Assistance and Companionship: elder 
care [65], personal assistant [239, 367, 368] 
Tour and Exhibition Guide: tour guide [295], 
museum exhibition guide [168, 368], guiding 
crowds [475], indoor building guide [89], 
museum interactive display [112]

Games: interactive treasure protection game 
[350], pong-like game [346, 370], labyrinth 
game [258], tangible game [49, 178, 230], air 
hockey [91, 451], tank battle [90, 221], adven-
ture game [55], role-play game [229], checker 
[242], domino [246], ball target throwing 
game [337], multiplayer game [115, 404], vir-
tual playground [272] Storytelling: immer-
sive storytelling [328, 369, 395, 415, 467] En-
hanced Display: immersive gaming and digi-
tal media [431] Music: animated piano key 
press [472, 473], tangible tabletop music 
mixer [340] Festivals: festival greetings [382] 
Aquarium: robotic and virtual �sh [240]

Remote Teaching: remote live instruction 
[445] Training: military training for working 
with robot teammates [199], piano instruc-
tion [472, 473], robotic environment setup 
[142], robot assembly guide [18], driving 
review [11], posture analysis and correction 
[183, 437] Tangible Learning: group activity 
[275, 328, 337, 408, 467], programming edu-
cation [416]

Human-Robot Social Interaction: reaction 
to human behaviors [93, 108, 414], cartoon 
art expression [377, 481], human-like robot 
head [14], co-eating [134], trust building 
[141], task assignment [439, 440] Robot-As-
sisted Social Interaction: projected text 
message conversations [382] Inter-Robot In-
teraction: human-like robot interaction [107]

Fabrication: augmented 3D printer [476],in-
teractive 3D modelling [341], augmented 
laser cutter [304], design simulation [52] 
Design Tools: circuit design guide [445], ro-
botic debugging interface [145], design and 
annotation tool [96], augmenting physical 3D 
objects [210] Theatre: children’s play [10]

Medical Assistance: robotic-assisted surgery 
[13, 82, 84, 85, 125, 181, 290, 354, 355, 460], 
doctors doing hospital rounds [228] Accessi-
bility: robotic prostheses [86, 136] Rehabili-
tation: autism rehabilitation [29], walking 
support [334]

Remote Physical Synchronization: physical 
manipulation by virtual avatar [242] Avatar 
Enhancement: life-sized avatar [197], �oating 
avatar [436, 475], life-sized avatar and sur-
rounding objects [189] Human-like Embodi-
ment: tra�c police [149]

Human-Vehicle Interaction: projected guid-
ance [2, 7], interaction with pedestrians [64, 
320], display for passengers [223] Augment-
ed Wheelchair: projecting intentions [458], 
displaying virtual hands to convey intentions 
[300], self-navigating wheelchair [314], assis-
tive features [495] Navigation: tangible 3D 
map [258], automobile navigation [438]

Ground Search: collaborative ground search 
[363], target detection and noti�cation [211, 
241, 266, 269, 305, 361, 468, 479], teleoperat-
ed ground search [54, 102, 267, 417, 469, 483, 
486] Aerial Search: drone-assisted search 
and rescue [114, 332, 482], target detection 
and highlight [464]

Adaptive Workspaces: individual and collab-
orative workspace transformation [159, 430, 
431] Supporting Workers: reducing
workload for industrial robot programmers 
[407], mobile presentation [168, 257, 338], 
multitasking with reduced head turns [38], 
virtual object manipulation [357]

Physical Data Encoding: physical bar charts 
[167, 429], embedded physical 3D bar charts 
[425] Scienti�c Physicalization: mathemati-
cal visualization [127, 243], terrain visualiza-
tion [116, 117, 243, 245, 308], medical data vi-
sualization [243] Physicalizing Digial Con-
tent: handheld shape-changing display [258, 
374]

Figure 10: Use cases and application domains.

10 EVALUATION STRATEGIES
In this section, we report our analysis of evaluation strategies for
augmented reality and robotics. The main categories we identified
are following the classification by Ledo et al. [236]: 1) evaluation
through demonstration, (2) technical evaluations, and (3) user eval-
uations. The goal of this section is to help researchers finding the
best technique to evaluate their systems, when designing AR for
robotic systems.

Evaluation-1. Evaluation throughDemonstration: Evaluation
through demonstration is a technique to see how well a system will
potentially work in certain situations. The most common approach
from our findings include showing example applications [84, 127,
142, 209, 245, 325, 366, 382, 418, 476] and proof-of-concept demon-
strations of a system [24, 55, 117, 162, 199, 221, 270, 305, 375, 479].
Other common approaches include demonstrating a system through
a workshop [244, 246, 476], demonstrating the idea to a focus
group [9, 367, 472, 492], carrying out case studies [105, 189, 324],
and providing a conceptual idea [200, 367, 374, 472, 492].

Evaluation-2. Technical Evaluation: Technical Evaluation refers
to how well a system performs based on internal technical mea-
sures of the system. The most common approaches for technical
evaluation are measuring latency [48, 51, 59, 69, 318, 495], accuracy
of tracking [15, 58, 59, 64, 486], and success rate [262, 314]. Also, we
found some works evaluate their system performances based on the
comparison with other systems, which for example, include compar-
ing tracking algorithms with other approaches [38, 59, 63, 132, 406].

Evaluation-3. User Evaluation: User evaluation refers to measur-
ing the effectiveness of a system through user studies. To measure
the user performance when interacting with the system, there are
many different approaches and methods that are used. For example,
the NASA TLX questionnaire is a very popular technique for user
evaluation [15, 63, 67, 69, 358], which can be found used mostly

for industry related applications. Other approaches include run-
ning quantitative [38, 171, 184] and qualitative [21, 138, 165] lab
studies, through interviews [64, 103, 443] and questionnaires [48,
59, 495]. Sometimes systems combine user evaluations techniques
with demonstration [111, 382] or technical evaluations [15, 406]. In
observational studies [58, 369, 382], researchers can also get user
feedback through observations [135, 448]. Finally, some systems
also ran lab studies through expert interviews [10, 116, 340] to get
specific feedback from the expert’s perspectives.

11 DISCUSSION AND FINDINGS
Based on the analysis of our taxonomy, Figure 11 shows a summary
of the number of papers for each dimension. In this section, we dis-
cuss common strategies and gaps across characteristics of selected
dimensions.

Robot - Proximity Category: In terms of proximity, co-located
with distance are the preferred method in AR-HRI systems (251
papers). This means that the current trend for AR-HRI systems is
to have users co-located with the robot, but to not make any sort of
contact with it. This also suggests that AR devices provide a promis-
ing way to interact with robots without having the need to directly
make contact with it, such as performing robotic manipulation
programming through AR [326].

Design - UI and Widget Category: In terms of the Design - UI
and Widgets category, labels and annotations are the most common
choice (241 papers) used in AR systems. Given that AR enables
us to design visual feedback without many of the constraints of
physical reality, researchers of AR-HRI systems take advantage of
that fact to provide relevant information about the robot and/or
other points of interest such as the environment and objects [96].
Increasingly, other widgets are used, such as information panels,
floating displays, or menus. It is notable that only 24 papers made
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Figure 11: A visualization with overall counts of characteristics across all dimensions.

use of virtual control handles, possibly implying that AR is not yet
commonly used for providing direct control to robots.

Interactions - Level of Interactivity Category: For the Interac-
tion Level category, we observed that explicit and indirect input is
the most common approach within AR-HRI systems (295 papers).
This means that user input through AR to interact with the robot
must go through some sort of input mapping to accurately interact
with the robot. This is an area that should be further explored,
which we mention in Section 11 - Immersive Authoring and
Prototyping Environments for AR-HRI. However, while AR
may not be the popular approach in terms of controlling a robot’s
movement, as mentioned above, it is still an effective medium to
provide other sorts of input, such as path trajectories [358], for
robots.

Interactions -Modality Category: In the InteractionModality cat-
egory, pointers and controllers (136 papers) and spatial gestures (116
papers) are most commonly used. Spatial gestures, for example, are
used in applications such as robot gaming [273]. Furthermore, touch
(66 papers) and tangibles (68 papers) are also common interaction
modalities, indicating that these traditional forms of modality are
seen as effective options for AR-HRI systems (for example, in appli-
cations such as medical robots [459] and collaborative robots [493]).
It is promising to see how many AR-HRI systems are using tan-
gible modalities to provide shape-changing elements [243] and
control [340] to robots. Gaze and voice input are less common
across the papers in our corpus, similar to proximity-based input,
pointing to interesting opportunities for future work to explore
these modalities in the AR-HRI context.

12 FUTURE OPPORTUNITIES
Finally, we formulate open research questions, challenges, and
opportunities for AR and robotics research. For each opportunity,
we also discuss potential research directions, providing sketches
and relevant sections or references as a source of inspiration. We

Making AR-HRI Practical and Ubiquitous

Technological and Practical Challenges Deployment and Evaluation In-the-Wild

Figure 12: Opportunity-1: Making AR-HRI Practical and
Ubiquitous. Left: Improvement of display and tracking tech-
nologies would broaden practical applications like robotic
surgery. Right: Deployment in-the-wild outside the research
lab, such as construction sites, would benefit from user-
centered design.

hope this section will guide, inspire, and stimulate the future of
AR-enhanced Human-Robot Interaction (AR-HRI) research.

Opportunity-1. Making AR-HRI Practical and Ubiquitous:
— Technological and Practical Challenges: While AR-HRI has a great
promise, there are many technological and practical challenges
ahead of us. For example, the accurate realistic superimposition or
occlusion of virtual elements is still very challenging due to noisy
real-time tracking. The improvement of display and tracking
technologies would broaden the range of practical applications, es-
pecially when more precise alignments are needed, such as robotic-
assisted surgery or medical applications (Section 9.7). Moreover,
error-reliable system design is also important for practical appli-
cations. AR-HRI is used to improve safety for human co-workers
(Section 5.2), however, if the AR system fails in such a safety-
critical situation, users might be at risk (e.g., device malfunctions,
content misalignment, obscured critical objects with inappropriate
content overlap, etc). It is important to increase the reliability of
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Designing and Exploring New AR-HRI

Re-imagining Robot Design Immersive Authoring and Prototyping

Figure 13: Opportunity-2: Designing and Exploring NewAR-
HRI. Left: AR-HRI can open up a new opportunity for un-
conventional robot design like fairy or fictional characters
with the power of AR. Right: Immersive authoring tools al-
low us to prototype interactions through direct manipula-
tion within AR.

AR systems from both systems design and user interaction perspec-
tives (e.g., What extent should users rely on AR systems in case
the system fails? How can we avoid visual clutter or the occlusion
of critical information in a dangerous area? etc). These technical
and practical challenges should be addressed before we can see AR
devices be common in everyday life.
— Deployment and Evaluation In-the-Wild: Related to the above,
most prior AR-HRI research has been done in controlled labora-
tory conditions. It is still questionable whether these systems and
findings can be directly applied to a real-world situation. For exam-
ple, outdoor scenarios like search-and-rescue or building construc-
tion (Section 9) may require very different technical requirements
than indoor scenarios (e.g., Is projection mapping visible enough
outdoors? Can outside-in tracking sufficiently cover the area that
needs to be tracked?). On the other hand, the current HMD de-
vices still have many usability and technical limitations, such as
display resolution, visual comfort, battery life, weight, the field of
view, and latency issues. To appropriately design a practical sys-
tem for real-world applications, it is important to design based on
the user’s needs through user-centered design by conducting a
repeated cycle of interviews, prototyping, and evaluation. In par-
ticular, researchers need to carefully consider different approaches
or technological choices (Section 3) to meet the user’s needs. The
deployment and evaluation in the wild will allow us to develop a
better understanding of what kind of designs or techniques should
work and what should not in real-world situations.

Opportunity-2. Designing and Exploring New AR-HRI:
— Re-imagining Robot Design without Physical Constraints: With
AR-HRI, we have a unique opportunity to re-imagine robots de-
sign without constraints of physical reality. For example, we have
covered interesting attempts from the prior works, likemaking non-
humanoid robots humanoid [180, 198, 481] ormaking robots visually
animated [3, 14, 158] (Section 7.3), either through HMD [197] or
projecion [14] (Section 3). However, this is just the tip of the iceberg
of such possibilities. For example, what if robots would look like a
fictional character [57, 208] or behave like Disney’s character anima-
tion? [214, 434, 444]We believe there is still a huge untapped design
opportunity for augmented virtual skins of the robots by fully

AR-HRI for Better Decision-Making

Real-time Embedded Data Viz for AR-HRI Explainable and Explorable Robotics

Figure 14: Opportunity-3: AR-HRI for Better Decision-
Making. Left: Real-time embedded and immersive visualiza-
tions help an operator’s decision-making in drone naviga-
tion for search-and-rescue. Right: AR-based explainable ro-
botics enables the user to understand a robot’s path plan-
ning behavior through physical explorations.

leveraging the unlimited visual expressions. In addition, there is also
a rich design space of dynamic appearance change by leveraging
visual illusion [259, 260], such asmaking robots disappear [299, 369],
change color [152, 453], or transform its shape [170, 392, 424, 425]
with the power of AR. By increasing the expressiveness of robots
(Section 5.5), this could improve the engagement of the users and
enable interesting applications (e.g., using drones that have facial
expression [173] or human body/face [148] for remote telepres-
ence [197]). We argue that there are still many opportunities for
such unconventional robot design with expressive visual aug-
mentation. We invite and encourage researchers to re-imagine such
possibilities for the upcoming AR/MR era.
— Immersive Authoring and Prototyping Environments for AR-HRI:
Prototyping functional AR-HRI systems is still very hard, given
the high barrier of requirements in both software and hardware
skills. Moreover, the development of such systems is pretty time-
consuming—people need to continuously move back and forth
between the computer screen and the real world, which hinders
the rapid design exploration and evaluation. To address this, we
need a better authoring and prototyping tool that allows even non-
programmers to design and prototype to broaden the AR-HRI
research community. For example, what if, users can design and
prototype interactions through directmanipulationwithin AR,
rather than coding on a computer screen? (e.g., one metaphor is, for
example, Figma for app development or Adobe Character Anima-
tor for animation) In such tools, users also must be able to design
without the need for low-level robot programming, such as ac-
tuation control, sensor access, and networking. Such AR authoring
tools have been explored in the HCI context [40, 247, 311, 455]
but are still relatively unexplored in the domain of AR-HRI except
for a few examples [51, 422]. We envision the future of intuitive
authoring tools should invoke further design explorations of AR-
HRI systems (Section 7) by democratizing the opportunity to the
broader community.

Opportunity-3. AR-HRI for Better Decision-Making:
— Real-time Embedded Data Visualization for AR-HRI: AR interfaces
promise to support operators’ complex decision-making (Section
5.2) by aggregating and visualizing various data sources, such as
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Novel Interaction Design Enabled by AR-HRI

Natural Input Interactions with AR-HRI Blending the Virtual and Physical Worlds

Figure 15: Opportunity-4: Novel Interaction Design enabled
by AR-HRI. Left: The user can interact with a swarm of
drones with an expressive two-handed gesture like a mid-
air drawing. Right: Programmable physical actuation and
reconfiguration enable us to further blend the virtual and
physical worlds, like a virtual remote user can “physically”
move a chess piece with tabletop actuation.

internal, external, or goal-related information (Section 6.1-6.3).
Currently, such visualizations are mainly limited with simple spa-
tial references of user-defined data points (Section 7.2), but there
is still a huge potential to connect data visualization to HRI [428]
in the context of AR-HRI. For example, what if AR interfaces can
directly embed real-time data onto the real world, rather than
on a computer screen? We could even combine real-time visualiza-
tions with a world-in-miniature [95] to facilitate navigation in a
large area, such as drone navigation for search-and-rescue. We can
take inspiration from existing immersive data analysis [70, 113] or
real-time embedded data visualization research [423, 462, 463] to
better design such data-centric interfaces for AR-HRI. We encour-
age the researchers to start thinking about how we can apply these
emerging data visualization practices for AR-HRI systems in the
future.
—Explainable and Explorable Robotics through AR-HRI: As robots be-
come more and more intelligent and autonomous, it becomes more
important to make the robot’s decision-making process visible and
interpretable. This is often called Explainable AI in the context of
machine learning and AI research, but it is also becoming relevant
to robotics research as Explainable Robotics [97, 390]. Currently,
such explanations are represented as descriptive text or visuals on
a screen [97]. However, by leveraging AR-HRI systems, users can
better understand the robots’ behavior by seeing what they see
(sensing), how they think (decision making), and how they respond
(actions) in the real world. For example, what if users can see what
a robot recognizes as obstacles or how it chooses the optimal path
when navigating in a crowded place? More importantly, these vi-
sualizations are also explorable—users can interactively explore
to see how the robot’s decision would change when the physical
world changes (e.g., directly manipulating physical obstacles to
see how the robot’s optimal path updates). Such interfaces could
help programmers, operators, or co-workers understand the robot’s
behavior more easily and interactively. Future research should con-
nect explainable robotics with AR to better visualize the robot’s
decision-making process embedded in real-world.

Opportunity-4. Novel Interaction Design enabled by AR-HRI:

— Natural Input Interactions with AR-HRI Devices: With the pro-
liferation of HMD devices, it is now possible to use expressive
inputs more casually and ubiquitously, including gesture, gaze,
head, voice, and proximity-based interaction (Section 8.2). In con-
trast to environment-installed tracking, HMD-based hand- and
gaze-tracking could enable more natural interactions without the
constraint of location. For example, with the hand-tracking capabil-
ity, we can now implement expressive gesture interactions, such as
finger-snap, hand-waving, hand-pointing, and mid-air drawing for
swarm drone controls in entertainment, search and rescue, firefight-
ing, or agricultural foraging [17, 217]). In addition, the combination
of multiple modalities, such as voice, gaze, and gesture is also an
interesting direction. For example, when the user says “Can you
bring this to there?”, it is usually difficult to clarify the ambiguity
(e.g., “this” or “there”), but with the combination of gaze and gesture,
it is much easier to clarify these ambiguities within the context.
AR-based visual feedback could also help the user clarify their inten-
tions. The user could even casually register or program such a new
input on-demand through end-user robot programming (Section
5.1). Exploring new interactions enabled by AR-HRI systems is also
an exciting opportunity.
— Further Blending the Virtual and Physical Worlds: As robots weave
themselves into the fabric of our everyday environment, the term
“robots” no longer refer to only traditional humanoid or industry
robots, but can become a variety of forms (Section 2.1 and Sec-
tion 4.1)—from self-driving cars [7] to robotic furniture [421, 478],
wearable robots [99], haptic devices [449], shape-changing dis-
plays [127], and actuated interfaces [331]. These ubiquitous robots
will be used to actuate our physical world to make the world
more dynamic and reconfigurable. By levering both AR and this
physical reconfigurability, we envision further blending virtual and
physical worlds with a seamless coupling between pixels and
atoms. Currently, AR is only used to visually augment appearances
of the physical world. However, what if AR can also “physically”
affect the real-world? For example, what if a virtual user pushes
a physical wall then it moves synchronously? What if virtual wind
can wave a physical cloth or flag?What if virtual explosion canmake
a shock wave collapse physical boxes? Such virtual-physical in-
teractions would make AR more immersive with the power of
visual illusion, which can also have some practical applications
such as entertainment, remote collaboration, and education. Pre-
viously, such ideas were only partially explored [23, 401], but we
believe there still remains a rich design space to be further explored.
For future work, we should further seek to blend virtual and physi-
cal worlds by leveraging both visually (AR) and physically (robotic
reconfiguration) programmable environments.

13 CONCLUSION
In this paper, we present our survey results and taxonomy of AR
and robotics, synthesizing existing research approaches and designs
in the eight design space dimensions. Our goal is to provide a com-
mon ground for researchers to investigate the existing approaches
and design of AR-HRI systems. In addition, to further stimulate
the future of AR-HRI research, we discuss future research oppor-
tunities by pointing out eight possible directions: 1) technological
and practical challenges, 2) deployment and evaluation in-the-wild,
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3) re-imagining robot design, 4) immersive authoring and proto-
typing environments, 5) real-time embedded data visualization for
AR-HRI, 6) explainable and explorable robotics with AR, 7) novel
interactions techniques, and 8) further blending the virtual and
physical worlds with programmable augmentation and actuation.
We hope our survey, taxonomy, and open research opportunity will
guide and inspire the future of AR and robotics research.
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Table 1: References of Section 3. Approaches to Augmenting Reality in Robotics

Category Count Citations

Augment
Robots
→ On-Body
(Head and Eye)

103 Figure: [198]—[25–27, 30, 31, 33, 42, 43, 46–48, 51, 52, 59, 61, 67, 69, 76, 78, 80, 83, 85, 103, 107–109, 114, 118, 126, 134, 137, 156, 158, 160–162,
165, 174, 180, 181, 188, 189, 194, 197, 198, 200, 209, 211, 220, 224–226, 231, 252, 262, 267, 271, 283, 285, 287, 290, 292, 296, 297, 301, 302, 315, 323–
327, 329, 342, 352, 354, 358, 360, 363, 366, 367, 372, 375, 376, 379, 387, 393, 396–398, 400, 413, 443, 450, 451, 454, 456, 474, 477, 481, 482, 487, 488]

→ On-Body
(Handheld)

26 Figure: [481]—[9, 18, 19, 53, 55, 76, 101, 115, 130, 131, 133, 136, 144, 153, 195, 206, 209, 243, 263, 275, 305, 328, 373, 414, 481, 494]

→ On-
Environment

74 Figure: [431] — [9, 13, 15, 21, 31, 44, 45, 48, 64, 71, 73, 74, 82, 84, 92, 96, 101, 102, 104, 110, 115, 116, 120–124, 127, 128, 143, 145, 146, 159, 163, 167,
169, 193, 212, 216, 221, 243–245, 253, 258, 265, 284, 286, 290, 306, 310, 312, 313, 328, 330, 333–335, 365, 369, 374, 378, 380, 388, 395, 410, 417, 429–
431, 442, 472, 489, 492]

→ On-Robot 9 Figure: [14] — [14, 210, 382, 391, 418, 436, 445, 475]

Augment Sur-
roundings
→ On-Body
(Head and Eye)

146 Figure: [341] — [11, 24–27, 29, 30, 33, 38, 39, 43, 47, 51, 54, 56, 59, 61, 66, 67, 69, 76, 79, 80, 85, 86, 93, 98, 105, 111, 114, 118, 119, 125, 126, 137,
139, 141, 149, 156, 158, 161, 165, 171, 174, 177, 181, 182, 184, 185, 189, 190, 194, 196, 199, 200, 205, 211, 213, 215, 220, 222, 224–226, 231, 234, 237,
238, 241, 242, 248, 252, 255, 256, 262, 267, 270, 274, 278, 282, 283, 285, 287, 292, 296, 297, 301, 302, 315, 323, 325–327, 329, 332, 333, 336, 341–
343, 352, 354, 355, 357, 358, 360–363, 366, 367, 372, 376, 379, 381, 394, 396–398, 400, 402, 409, 413, 439–441, 443, 448, 450, 451, 454, 456, 457, 464, 468–
470, 477, 479, 480, 482, 483, 488, 491, 493, 495]

→ On-Body
(Handheld)

28 Figure: [133] — [19, 53, 55, 62, 63, 76, 89, 101, 131–133, 135, 136, 144, 149, 153, 177, 201, 206, 228, 232, 263, 275, 295, 305, 407, 481, 494]

→ On-
Environment

139 Figure: [140] — [13, 15, 20, 21, 33, 35, 44, 45, 49, 50, 71–74, 77, 82, 88, 90–92, 94, 96, 102, 110, 116, 117, 120–124, 128, 138, 140, 142, 143, 145–
147, 149, 150, 157, 163, 164, 167, 169, 177, 178, 183, 187, 188, 191, 207, 212, 216, 221, 223, 229, 230, 233, 239, 240, 246, 251, 253, 257, 264, 265, 268,
269, 272, 273, 279, 282, 284, 288, 289, 303, 306, 309, 310, 312, 313, 318, 319, 333–335, 340, 343, 344, 346–348, 350, 351, 369–371, 377, 380, 383–
385, 388, 389, 404, 406, 408, 410–412, 415, 416, 419, 420, 425, 433, 436, 438, 442, 447, 451, 452, 459–461, 465, 467, 468, 471, 473, 484–486, 489, 492, 496]

→ On-Robot 33 Figure: [112] — [10, 12, 58, 65, 91, 112, 166, 168, 188, 203, 204, 210, 249, 250, 261, 266, 300, 314, 317, 319, 320, 337, 338, 368, 370, 382, 418, 432, 435,
437, 445, 458, 476]
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Table 2: References of Section 4. Characteristics of Augmented Robots

Category Count Citations
Form Factor
→ Robotic
Arms

172 Figure: [79] — [9, 12, 13, 20, 21, 24–27, 30, 33, 35, 39, 42, 44, 45, 47, 48, 51–53, 56, 59, 61, 63, 66, 67, 69, 72, 74, 77, 79, 80, 82–85, 92, 94, 98, 101, 103–
105, 110, 118–126, 128, 132, 133, 136, 138, 140, 143, 147, 150, 153, 160–162, 164, 169, 174, 181, 182, 185, 187, 190, 194–196, 203, 204, 207, 215, 216,
222, 225, 226, 231, 232, 248, 250–253, 255–257, 262, 264, 270, 274, 279, 282, 283, 285, 286, 288–290, 292, 297, 301, 309, 310, 312, 313, 319, 323–
327, 329, 330, 336, 341, 347, 348, 352, 354, 355, 358, 372, 378, 379, 383–385, 389, 394, 396–398, 400, 402, 409–411, 413, 420, 432, 433, 435, 442, 447, 448,
452, 454, 456, 457, 459–461, 470, 474, 477, 485, 487–489, 491, 493, 496]

→ Drones 25 Figure: [96] — [15, 38, 58, 76, 78, 96, 114, 157, 171, 177, 184, 209, 227, 261, 317, 332, 382, 388, 436, 450, 451, 475, 482, 492, 494]
→ Mobile
Robots

133 Figure: [468] — [10, 18, 19, 29, 43, 49, 50, 52–55, 62, 64, 66, 71, 73, 88–91, 101, 102, 107–109, 112, 115, 117, 131, 135, 136, 142, 144–146, 156, 163, 165,
169, 174, 177, 178, 180, 188, 189, 191, 197, 199–201, 205, 209–212, 221, 224, 225, 228–230, 233, 234, 237, 238, 241, 249, 263, 265–269, 272, 273, 275, 284,
296, 305, 306, 318, 327, 328, 333, 335, 340, 343, 344, 346, 350, 351, 357, 360–363, 365, 368–371, 373, 375, 377, 380, 381, 391, 393, 404, 406–408, 412, 414–
418, 425, 437, 445, 451, 464, 467–469, 471, 479–481, 483, 484, 486]

→ Humanoid
Robots

33 Figure: [440] — [11, 14, 29, 46, 59, 93, 111, 134, 137, 139, 141, 149, 158, 166, 183, 213, 220, 254, 262, 271, 278, 295, 315, 342, 366, 367, 372, 376, 395, 439–
441, 465]

→ Vehicles 9 Figure: [320] — [2, 7, 223, 300, 314, 320, 438, 458, 495]
→ Actuated
Objects

28 Figure: [245] — [116, 117, 127, 130, 136, 159, 167, 168, 193, 209, 240, 242–246, 258, 287, 303, 334, 374, 387, 429–431, 443, 472, 473]

→ Combina-
tions

14 Figure: [98] — [29, 52, 53, 66, 98, 101, 117, 136, 169, 174, 177, 209, 225, 327]

→ Other
Types

12 Figure: [304] — [31, 65, 86, 136, 206, 239, 302, 304, 337, 338, 443, 476]

Relationship
→ 1 : 1 324 Figure: [153] — [9, 11, 12, 14, 15, 18–21, 24–27, 29, 30, 33, 35, 38, 39, 42–47, 49–56, 58, 59, 61–67, 69, 72–74, 76, 79, 80, 82–86, 88, 89, 92–94, 96, 98, 102–

105, 108–111, 114–128, 130, 132–141, 143, 144, 147, 149, 150, 153, 156–158, 160–162, 164, 165, 167, 169, 171, 174, 177, 180–185, 187–191, 193–
197, 199, 201, 203–207, 209–211, 213, 215, 216, 220, 222–234, 237–239, 241–245, 249–253, 255–258, 262, 264, 266–274, 278, 279, 282, 283, 285–
290, 292, 295–297, 300, 302, 303, 305, 309, 310, 312–315, 318, 319, 323–326, 329, 330, 332–337, 341, 342, 346–348, 350–352, 354, 355, 357, 358, 360–
363, 365–368, 370–374, 376–381, 383–385, 389, 393, 394, 396–398, 400, 402, 406, 407, 409, 411, 413, 414, 417, 419, 420, 429, 432, 433, 435, 437–
443, 445, 447, 450, 452, 454, 456–460, 464, 465, 467–474, 476, 477, 479–489, 491–496]

→ 1 : m 34 Figure: [131] — [13, 48, 78, 90, 101, 107, 131, 142, 145, 163, 176–178, 212, 235, 240, 246, 248, 263, 265, 284, 301, 306, 327, 328, 340, 344, 387, 388, 391,
395, 416, 425, 448]

→ n : 1 25 Figure: [430] — [10, 31, 77, 91, 112, 146, 159, 166, 168, 275, 317, 320, 338, 343, 345, 364, 369, 382, 404, 410, 418, 430, 436, 461, 475]
→ n : m 10 Figure: [328] — [71, 200, 221, 328, 375, 408, 412, 415, 431, 451]

Scale
→ Handheld-
scale

19 Figure: [179] — [39, 46, 71, 86, 179, 237, 238, 258, 273, 296, 303, 306, 328, 351, 374, 412, 419, 425, 443]

→ Tabletop-
scale

70 Figure: [257] — [11, 14, 18, 19, 49, 50, 52, 55, 61, 72, 78, 83, 90, 116, 117, 127, 130, 136, 142, 146, 156, 157, 159, 163, 167, 178, 187, 193, 196, 201, 206,
212, 213, 221, 234, 239, 242–246, 257, 268, 275, 278, 284, 297, 327, 330, 333, 335, 340, 343, 348, 360, 362, 365, 371, 380, 407, 408, 416, 429, 445, 451, 476,
480, 484, 487, 489]

→ Body-scale 255 Figure: [289] — [9, 10, 12, 13, 20, 21, 24–27, 29–31, 33, 35, 38, 42, 44, 45, 47, 48, 51, 53, 56, 59, 63, 65, 67, 69, 73, 74, 76, 77, 79, 80, 82, 85, 88, 91–
94, 96, 98, 101–105, 107–112, 115, 118–126, 128, 131–141, 143, 145, 147, 150, 153, 158, 160–166, 168, 169, 171, 174, 180–185, 189–191, 194, 195, 203–
205, 207, 209–211, 215, 216, 220, 222, 224–232, 240, 248–253, 255, 256, 262–265, 269–272, 274, 279, 282, 283, 285–290, 292, 300–302, 309, 310, 312,
313, 315, 319, 323–327, 329, 334, 336–338, 341, 342, 344, 346, 347, 350, 352, 354, 355, 357, 358, 369, 370, 372, 373, 375–379, 381, 383–385, 387–
389, 391, 393–398, 400, 402, 404, 406, 409–411, 413–415, 420, 430–433, 435, 439–442, 447, 448, 450, 452, 454, 456, 457, 459–461, 464, 465, 467–
474, 477, 481, 482, 485, 488, 491–493, 496]

→

Building/City-
scale

6 Figure: [2] — Building/City-scale [2] — [2, 7, 233, 320, 458, 475]

Proximity
→ Co-located 69 Figure: [98] — [13, 31, 33, 72, 85, 86, 98, 104, 116, 119, 125, 127, 128, 140, 157, 159, 167, 178, 190, 193, 203–205, 222, 224, 227, 243–246, 250, 258, 270,

289, 290, 300, 303, 314, 316, 324, 328, 340, 354, 355, 369, 374, 378, 379, 383, 394, 411, 416, 419, 420, 425, 429, 430, 432, 433, 435, 438, 443, 447, 451, 452,
461, 472, 473, 495]

→ Co-located
with Distance

251 Figure: [451] — [9–11, 14, 18, 19, 21, 24–27, 29, 30, 33, 35, 39, 42–45, 47–49, 51–53, 55, 56, 61, 63–67, 69, 71, 77–80, 82, 83, 88–94, 96, 98, 102, 103, 105, 107–
112, 115, 117, 118, 120, 121, 124, 126, 130–145, 147, 150, 153, 156, 158, 160–162, 164–166, 168, 171, 174, 177, 180–183, 185, 188, 189, 191, 194–197, 199–
201, 206, 207, 209, 211, 213, 215, 220, 221, 223, 225, 226, 229–232, 239–242, 248, 251–253, 255–257, 262, 264, 271–275, 278, 282, 283, 285, 288, 292, 295,
297, 301, 302, 305, 309, 310, 312, 315, 318, 320, 323–327, 329, 333, 335–338, 341, 346–348, 350–352, 357, 358, 360–363, 366–368, 370, 372, 373, 375–
377, 384, 385, 387, 389, 391, 393, 396–398, 400, 402, 404, 406–410, 412, 414, 415, 418, 431, 437, 439–443, 445, 448, 451, 454, 456–460, 464, 465, 467–
471, 474, 476, 477, 479–481, 485, 487, 488, 491, 493]

→ Semi-
Remote

19 Figure: [114] — [15, 38, 58, 62, 76, 114, 184, 224, 227, 249, 317, 344, 381, 382, 436, 450, 475, 482, 494]

→ Remote 66 Figure: [377] — [4, 12, 46, 48, 50, 54, 59, 73, 74, 84, 101, 114, 122, 123, 145, 146, 149, 163, 169, 187, 209, 210, 212, 216, 228, 233, 234, 237, 238, 252, 263, 265–
269, 279, 284, 286, 287, 296, 302, 306, 313, 319, 330, 332, 334, 342, 343, 365, 371, 377, 380, 388, 395, 404, 413, 417, 479, 483, 484, 486, 489, 492, 496]
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Table 3: References of Section 5. Purposes and Benefits of Visual Augmentation

Category Count Citations
Facilitate Pro-
gramming

154 Figure: [33] — [9, 12, 18, 19, 24, 25, 27, 30, 33, 38, 42, 45, 47, 51–54, 61–63, 66, 67, 69, 72, 74, 76, 79, 80, 83, 84, 93, 94, 98, 101, 103–105, 111, 115, 118, 120–
124, 126, 130–133, 135–137, 140, 142–146, 150, 153, 160–163, 169, 174, 178, 181, 184, 188, 191, 195, 196, 199–201, 206, 207, 209, 211, 212, 215, 216, 220,
227, 228, 231, 232, 239, 242, 251–253, 262, 263, 265, 267, 270, 271, 273–275, 279, 283–285, 288, 289, 295, 301, 303, 306, 312, 313, 315, 318, 319, 323–
326, 329, 330, 333, 336, 341, 344, 352, 358, 366, 373, 379, 385, 387, 388, 397, 398, 400, 407, 408, 448, 454, 456, 457, 467, 468, 474, 487–489, 493, 494, 496]

Support Real-
time Control

126 Figure: [494] — [4, 13, 15, 19, 20, 25–27, 35, 39, 46, 50, 55, 58, 59, 73, 76–78, 82, 85, 86, 92, 102, 110, 114, 125, 133, 139, 146, 147, 149, 156, 157, 163,
164, 169, 171, 177, 183, 185, 187, 190, 191, 194, 203–205, 209, 212, 215, 221, 222, 224, 233, 234, 237, 238, 248, 250, 255, 256, 264, 266, 268, 269, 286, 287,
290, 296, 297, 309, 310, 314, 327, 332, 334, 342, 347, 348, 354, 355, 357, 365, 370, 371, 376, 378, 380, 381, 383, 384, 389, 394, 396, 402, 404, 407, 409–
413, 417, 419, 420, 432, 435, 442, 447, 451, 452, 459–461, 469, 470, 477, 480, 482–484, 486, 491, 494, 495]

Improve Safety 32 Figure: [326] — [21, 43, 44, 56, 64, 66, 68, 88, 104, 138, 147, 160, 182, 188, 200, 225, 252, 282, 292, 326, 352, 354, 372, 379, 385, 397, 410, 420, 432, 450,
458, 495]

Communicate
Intent

82 Figure: [372] — [21, 25, 27, 29, 33, 44, 51–54, 59, 64, 67, 69, 88, 89, 103, 104, 108, 118, 136–139, 141, 153, 160, 171, 188, 200, 211, 223, 224, 227,
241, 248, 251, 262, 267, 271, 292, 300, 305, 313, 318–320, 325, 326, 329, 342, 354, 358, 360–363, 366, 367, 372, 373, 375, 376, 387, 404, 410, 433, 439–
441, 445, 450, 458, 464, 465, 473, 476, 479–481, 492, 494]

Increase Ex-
pressiveness

115 Figure: [158] — [3, 10, 11, 14, 31, 45, 48, 49, 55, 58, 65, 71, 82, 85, 90, 91, 93, 96, 107–109, 112, 116, 117, 119, 125–128, 134, 138, 142, 158, 159, 165–
168, 171, 180, 183, 189, 193, 197, 198, 210, 213, 221, 229, 230, 240, 242–246, 257, 258, 261, 272, 273, 278, 300, 302, 317, 320, 328, 332, 335, 337, 338,
340, 343, 346, 350–352, 355, 368–370, 374, 377, 382, 391, 393, 395, 401, 406, 412, 414–418, 425, 429–431, 436–438, 443, 445, 448, 451, 460, 467, 471–
473, 475, 481, 485, 492]

Table 4: References of Section 6. Classification of Presented Information

Category Count Citations
Internal Infor-
mation

94 Figure: [66, 479] — [9, 13, 15, 18, 19, 21, 25, 30, 44, 45, 53–56, 63, 64, 66, 86, 98, 101, 104, 107, 115, 120, 124, 126, 131–133, 136–138, 144, 145, 156, 158,
160, 181, 188, 195, 196, 199, 200, 209, 220, 223, 224, 228, 229, 231, 234, 251, 253, 262, 267, 271, 282, 283, 285, 292, 302, 310, 313, 315, 324, 329, 332, 334,
340, 352, 354, 355, 366, 367, 372, 373, 375, 379, 380, 385, 387, 410, 413, 416, 443, 450, 458, 474, 479, 481, 483, 484, 487, 488]

External Infor-
mation

230 Figure: [21, 377] — [4, 10, 12, 15, 21, 24–26, 33, 35, 38, 39, 43–47, 50, 53, 54, 56, 59, 61–63, 66, 69, 71, 73, 74, 76, 77, 79, 80, 82, 84, 85, 89, 92,
94, 102, 103, 108, 110, 111, 114, 115, 119–123, 125, 131–133, 135, 136, 138–140, 143–147, 149, 150, 153, 156, 157, 161, 164–166, 169, 171, 174, 177,
178, 181, 182, 184, 185, 188, 190, 194, 196, 199–201, 205, 209, 211–213, 216, 220, 223, 224, 226–234, 237, 238, 241, 246, 248, 251–253, 255, 256, 263–
269, 274, 278, 279, 282, 283, 287–289, 292, 295–297, 301, 305, 306, 309, 310, 312, 314, 315, 318, 323, 325–327, 329, 330, 332–334, 336, 341–343, 347,
348, 352, 354, 355, 357, 358, 360–362, 367, 376–380, 383, 384, 388, 389, 396–398, 400, 402, 404, 406, 407, 409–413, 415, 416, 420, 433, 435, 439–
442, 445, 448, 451, 452, 454, 456, 459–461, 464, 465, 468, 471, 477, 479–481, 483–486, 488, 489, 491–493, 495, 496]

Plan and Activ-
ity

151 Figure: [76, 136] — [9, 12, 21, 25–27, 29, 30, 33, 35, 42–44, 51–54, 59, 62, 64, 66, 67, 69, 72–74, 76, 78, 82, 83, 88, 94, 103–105, 108, 111, 118, 121–
123, 126, 130, 131, 135–141, 146, 153, 156, 160, 162, 163, 169, 177, 187, 188, 191, 194, 196, 199, 200, 206, 209, 211, 212, 215, 220, 221, 223, 226–229, 248,
252, 255, 256, 262, 263, 267, 270, 271, 275, 284–288, 290, 292, 303, 305, 306, 312, 313, 315, 318–320, 325–327, 329, 333, 336, 341, 342, 344, 354, 358, 360–
363, 365–367, 371–373, 379–381, 387, 391, 400, 404, 407, 415, 416, 450, 457, 458, 467, 470, 472, 473, 476, 479–482, 488, 493–495]

Supplemental
Content

117 Figure: [8, 386] — [8, 10, 11, 14, 20, 27, 31, 45, 48, 49, 55, 58, 65, 71, 77, 85, 90, 91, 93, 96, 107–109, 112, 116, 117, 119, 125, 127, 128, 134, 142, 158, 159, 165–
168, 171, 180, 183, 189, 193, 197, 203, 204, 207, 210, 222, 225, 229, 240, 242–246, 249, 250, 255, 257, 258, 272, 273, 290, 300, 302, 317, 328, 335, 337, 338,
340, 346, 350–352, 367–370, 374, 377, 382, 385, 386, 393–395, 401, 408, 412, 414–419, 425, 429–432, 436, 438, 443, 445, 447, 448, 451, 460, 472, 473, 475,
481, 485, 492]
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Table 5: References of 7. Design Components and Strategies

Category Count Citations
UIs and Wid-
gets
→Menus 115 Figure: [27, 58] — [9–12, 18, 19, 24, 25, 27, 45, 48, 51–53, 55, 58, 61–63, 65, 66, 71, 71, 79, 89, 92, 92, 94, 96, 101, 103, 105, 112, 116, 120, 126, 131, 136,

137, 140, 144, 149, 150, 153, 156, 159, 168, 174, 181, 188, 190, 190, 194, 194–196, 196, 199, 206, 207, 215, 224, 228, 231, 233, 234, 239, 242, 253, 253, 262,
263, 269, 271, 274, 275, 278, 278, 286, 289, 292, 292, 297, 301, 301, 302, 305, 325, 326, 328, 333, 336, 338, 344, 351, 351, 357, 360, 373, 375, 377, 380, 381,
385, 387, 397, 400, 407, 410, 412, 412, 416, 420, 420, 429, 437, 443, 445, 456, 459, 465, 469, 479, 484, 487, 488, 488, 496]

→ Information
Panels

80 Figure: [15, 145] — [9, 15, 18, 44, 45, 48, 52–55, 59, 71, 86, 89, 92, 94, 96, 98, 104, 107, 112, 115, 120, 128, 136, 144, 145, 149, 156, 181, 185, 188, 190, 194–
196, 199, 207, 223, 224, 228, 229, 232–234, 253, 262, 267, 278, 290, 292, 301, 315, 319, 329, 332, 336, 338, 344, 351, 355, 360, 373, 379–381, 412, 416, 420,
429, 437, 443, 451, 465, 470, 474, 479, 484, 488, 496]

→ Labels and
Annotations

241 Figure: [96, 492]— [9, 11–13, 15, 18–21, 24–27, 29, 31, 33, 35, 44, 47–54, 56, 59, 61–64, 66, 67, 69, 71–73, 76, 77, 79, 80, 82, 83, 85, 88, 92, 94, 96, 98, 101, 103–
105, 110, 111, 115, 118–121, 124–126, 131–133, 135–141, 143–146, 150, 153, 156–158, 161, 164, 165, 168, 174, 177, 181, 184, 188, 190, 191, 194–196, 199–
201, 203, 206, 209, 211–213, 220, 223, 225–228, 231–234, 237, 238, 241, 242, 246, 249–253, 256, 262–265, 267–271, 273–275, 278, 283–285, 288–
290, 292, 301–303, 305, 306, 310, 312, 313, 315, 318, 323–329, 333, 334, 336, 338, 341, 343, 347, 350, 351, 354, 358, 360–363, 366–368, 371, 373, 375–
377, 380, 383, 384, 387–389, 396–398, 400, 402, 406, 407, 410, 412, 413, 416, 420, 429, 430, 433, 435, 437, 439–442, 445, 447, 450, 451, 457, 459, 464, 465,
468, 472, 477, 479–485, 487–489, 491–496]

→ Controls
and Handles

24 Figure: [169, 340] — [42, 46, 58, 83, 127, 130, 159, 163, 169, 193, 201, 205, 206, 212, 225, 238, 239, 328, 330, 340, 416, 443, 469, 472]

→ Monitors
and Displays

47 Figure: [171, 443] — [11, 39, 48, 54, 76, 96, 112, 131, 143, 168, 171, 190, 196, 203, 204, 213, 222, 224, 239, 253, 309, 315, 317, 332, 337, 338, 348, 355, 368,
380, 382, 391, 394, 402, 409, 418, 419, 431, 436, 443, 445, 447, 471, 472, 475, 476, 495]

Spatial Refer-
ences and Vi-
sualizations
→ Points and
Locations

208 Figure: [325, 358, 435, 451] — [9, 12, 13, 15, 18–21, 24–26, 26, 27, 29, 31, 33, 35, 35, 48, 50–54, 61, 61–63, 66, 67, 69, 71, 71, 73, 73, 74, 76, 77, 82, 83, 85, 88,
92, 94, 94, 96, 98, 101, 110, 110, 111, 118, 120, 120, 121, 121, 122, 122, 123, 123–126, 131–133, 135–137, 139, 139–141, 143–146, 146, 150, 153, 156, 156–
158, 161, 161, 163, 164, 174, 177, 181, 190, 190, 191, 194, 194, 196, 196, 199–201, 206, 212, 216, 220, 221, 226–228, 230, 231, 231–233, 233, 234, 237, 238,
241, 242, 246, 248, 248, 250–253, 253, 256, 256, 262–264, 267, 268, 268, 271, 274, 278, 283, 283–285, 288, 292, 292, 301, 301–303, 303, 306, 306, 310, 312–
315, 318, 319, 323, 323–327, 327–330, 333, 333, 334, 341, 343, 344, 347, 350, 351, 354, 358, 360, 360–362, 362, 363, 371, 373, 375, 376, 376, 380, 380, 384, 387–
389, 391, 396, 396, 397, 397, 398, 400, 402, 402, 407, 410, 410, 413, 416, 420, 425, 433, 435, 439–442, 442, 445, 450, 451, 454, 456, 459, 464, 465, 468, 470,
472, 474, 477, 477, 480–485, 487, 487, 488, 488, 489, 491, 491–496]

→ Paths and
Trajectories

154 Figure: [76, 136, 206, 450, 494] — [9, 21, 25–27, 30, 33, 35, 44, 51–54, 59, 61, 62, 64, 67, 69, 71, 73–76, 83, 88, 94, 103–105, 110, 118, 120–124, 130, 131, 136–
140, 146, 149, 153, 156, 157, 160–163, 169, 177, 181, 188, 190, 191, 194, 196, 199, 201, 206, 209, 211, 212, 220, 221, 223, 226–229, 231–233, 241, 248, 251–
253, 256, 262, 263, 267, 268, 270, 271, 283, 290, 292, 301–303, 305, 306, 312, 313, 315, 318, 320, 323, 325–327, 329, 333, 336, 342, 344, 354, 355, 358, 360–
363, 366, 367, 372, 376, 379, 380, 387, 391, 396–398, 400, 402, 407, 410, 415, 442, 450, 451, 454, 456, 458, 467, 470, 472, 473, 476, 477, 481, 482, 487, 488,
491, 492, 494, 495]

→ Areas and
Boundaries

178 Figure: [21, 145, 182, 191] — [9, 15, 20, 21, 25, 26, 31, 35, 38, 39, 44, 47, 48, 51, 53, 56, 61–64, 68, 69, 71, 73, 74, 77, 82, 84, 89, 92, 101, 102, 105, 110, 115, 120–
123, 126, 131–133, 136, 138–140, 142, 144–146, 149, 150, 153, 156, 161, 163, 164, 168, 171, 174, 177, 178, 182, 184, 188, 190, 191, 195, 196, 200, 201, 203,
206, 211, 212, 220, 221, 223, 227, 230, 231, 233, 237, 238, 242, 246, 248, 250, 252, 256, 263–269, 273, 274, 278, 282–284, 288, 289, 292, 301, 305, 306, 309,
312, 315, 318, 325–327, 332, 333, 340–343, 346, 347, 350–352, 354, 358, 360, 362, 363, 366, 367, 376, 380, 384, 385, 388, 389, 396, 402, 406, 407, 410–
413, 415–417, 425, 432, 439, 440, 442, 445, 447, 451, 456, 459, 460, 465, 470, 471, 477, 483–485, 487–489, 491–493, 495, 496]

→ Other Visu-
alizations

91 Figure: [177, 212, 282, 322] — [10, 14, 43, 45, 46, 49, 55, 58, 65, 66, 72, 78, 79, 90, 108, 114, 116, 124, 127, 128, 134, 147, 159, 165, 167, 176, 177, 180, 183,
187, 189, 193, 197, 204, 205, 210, 212, 215, 222, 224, 225, 239, 240, 243–245, 249, 257, 258, 272, 282, 286, 300, 317, 322, 330, 332, 335, 337, 338, 348, 368–
370, 374, 377–379, 381–383, 394, 395, 404, 408, 411, 417–419, 429–431, 436, 438, 443, 447, 452, 457, 461, 473, 475]

Embedded Vi-
sual Effects
→ Anthropo-
morphic

22 Figure: [3, 158, 180, 197, 242, 473] — [3, 14, 23, 51, 107, 108, 158, 165, 180, 189, 197, 198, 242, 320, 395, 401, 414, 436, 450, 472, 473, 481]

→ Virtual
Replica

144 Figure: [4, 114, 163, 209, 372, 451] — [4, 12, 21, 25, 27, 30, 33, 43, 45, 47, 51–53, 59, 61, 66, 67, 69, 73, 74, 76, 80, 82–85, 92, 101–104, 110, 111, 114, 118, 120–
124, 126, 130, 131, 133, 134, 137, 138, 143, 144, 146, 147, 153, 156, 160–163, 169, 174, 181, 183, 185, 194, 195, 201, 206, 209, 211, 212, 216, 225–
227, 231, 249, 251–253, 262, 265, 267, 270, 271, 273, 283, 285, 287, 290, 292, 296, 297, 301, 302, 306, 312, 313, 318, 323–327, 329, 333, 336, 341, 342, 344,
352, 354, 358, 360, 365, 372, 376, 380, 381, 388, 396–398, 400, 410, 413, 417, 437, 438, 442, 451, 454, 456, 457, 459, 460, 470, 472, 474, 476, 477, 487–
489, 494, 496]

→ Texture
Mapping

32 Figure: [245, 308, 328, 374, 425, 429] — [20, 39, 116, 119, 127, 159, 175, 193, 222, 243–245, 250, 258, 308, 328, 340, 348, 369, 370, 374, 378, 383, 411, 425,
429, 431, 432, 447, 452, 461, 493]
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Table 6: References of 8. Interactions

Category Count Citations
Interactivity
→ Only Out-
put

27 Figure: [450] — [39, 56, 64, 89, 107, 117, 134, 145, 158, 180, 197, 223, 240, 261, 282, 314, 332, 363, 372, 382, 418, 433, 436, 438, 450, 464, 481]

→ Implicit 11 Figure: [458] — [38, 44, 88, 249, 258, 292, 357, 410, 414, 458, 493]
→ Indirect 295 Figure: [346] — [9–12, 14, 15, 18, 19, 21, 24–27, 29–31, 33, 35, 42, 43, 45, 47–55, 58, 59, 61–63, 66, 67, 69, 71–74, 76–80, 82–86, 90–94, 96, 98, 101–

103, 105, 108–112, 114, 115, 118, 120–124, 126, 130–133, 135–144, 146, 147, 149, 150, 153, 156, 158, 160–166, 168, 169, 171, 174, 177, 181–185, 188, 189,
191, 194–196, 199–201, 206, 207, 209–211, 213, 215, 216, 220, 221, 226–234, 237–239, 241–243, 248, 251–253, 255–257, 262–269, 271–275, 278, 279, 283–
288, 295–297, 301–303, 305, 306, 309, 310, 312, 313, 315, 317–320, 323, 325–327, 329, 330, 332–338, 341–344, 346, 347, 350–352, 358, 360–362, 365–
368, 370, 372, 373, 375–377, 380, 382, 384, 385, 387–389, 391, 393, 395–397, 400, 402, 404, 406–409, 412, 413, 415, 417, 418, 431, 436, 437, 439–
443, 445, 448, 454, 456, 459–461, 465, 467–471, 474–477, 479–489, 491, 492, 494–496]

→ Direct 72 Figure: [316] — [13, 20, 30, 31, 33, 46, 49, 65, 98, 104, 116, 119, 125, 127, 128, 140, 157, 159, 163, 167, 178, 187, 190, 193, 203–205, 212, 222, 224, 225, 243–
246, 250, 270, 289, 290, 300, 316, 324, 328, 340, 348, 354, 355, 369, 371, 374, 378, 379, 381, 383, 394, 398, 411, 416, 419, 420, 425, 429, 430, 432, 435, 443,
447, 451, 452, 457, 472, 473]

Interaction
Modalities
→ Tangible 68 Figure: [163] — [13, 21, 31, 33, 49, 72, 82, 85, 86, 94, 98, 104, 116, 117, 124, 125, 127, 128, 138, 140, 143, 144, 159, 163, 167, 178, 190, 193, 229, 243–

246, 251, 258, 270, 275, 289, 290, 303, 313, 323, 324, 328, 329, 337, 338, 340, 354, 355, 369, 374, 379, 398, 409, 414, 416, 419, 420, 425, 429, 435, 443, 448,
451, 472, 473, 489]

→ Touch 66 Figure: [169] — [9, 10, 18, 19, 53, 55, 61–63, 65, 72, 76, 92, 101, 103, 130–133, 135, 136, 140, 144, 149, 153, 159, 163, 169, 195, 196, 201, 207, 209, 212,
228, 230, 231, 239, 243, 257, 263, 285, 288, 295, 300, 302, 305, 333, 346, 350, 373, 377, 382, 385, 404, 407, 416, 430, 445, 456, 459, 461, 479–481, 487]

→ Controller 136 Figure: [191] — [12, 15, 20, 31, 35, 39, 42, 45, 46, 48–50, 54, 71, 73, 74, 77, 83, 84, 90, 96, 101, 102, 105, 110, 115, 119–123, 142, 146, 147, 149, 150, 156,
157, 160, 164, 171, 177, 185, 187, 188, 191, 203–205, 210, 215, 220–222, 224, 227, 228, 233, 234, 250, 252, 253, 256, 264, 266–269, 275, 279, 284, 286, 306,
309, 310, 312, 313, 315, 317–319, 330, 332–335, 338, 341, 343, 344, 347, 348, 351, 365, 370–372, 378, 380, 381, 383, 384, 388, 389, 391, 394, 395, 402, 411,
413, 415, 417, 418, 432, 433, 436, 442, 443, 447, 451, 452, 457, 460, 467, 468, 470, 475, 476, 483–486, 491–493, 495]

→ Gesture 116 Figure: [58] — [3, 11, 24–27, 30, 33, 43, 47, 48, 51, 52, 58, 59, 66, 69, 78, 80, 91, 93, 96, 98, 103, 105, 109, 111, 112, 114, 118, 126, 136, 137, 139, 141, 156, 158,
161, 162, 165, 166, 168, 174, 181–183, 189, 194, 199, 200, 206, 211, 216, 225, 226, 231, 232, 237, 238, 242, 255, 257, 262, 270–274, 278, 285, 287, 296, 297,
301, 302, 320, 325–327, 329, 332, 336, 337, 341, 342, 352, 357, 358, 360, 362, 366, 368, 372, 375, 376, 387, 393, 396, 397, 400, 401, 410, 412, 431, 437, 439–
441, 454, 465, 469, 474, 477, 488, 494, 496]

→ Gaze 14 Figure: [482] — [27, 28, 33, 38, 67, 114, 262, 300, 320, 325, 336, 358, 362, 482]
→ Voice 18 Figure: [184] — [14, 27, 54, 67, 108, 156, 182, 184, 197, 213, 239, 336, 354, 362, 367, 396, 404, 406]
→ Proximity 21 Figure: [200] — [14, 44, 88, 138, 182, 200, 229, 241, 265, 283, 292, 305, 350, 361, 368, 430, 431, 437, 458, 467, 471]
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Table 7: References of 9. Application Domains

Category Count Citations
Domestic and
Everyday Use

35 Figure: [263] — Household Task authoring home automation [53, 111, 135, 163, 177, 191, 212, 228, 263, 327, 365, 387, 480], item movement and
delivery [76, 108, 209, 265], displaying cartoon-art while sweeping [481], multi-purpose table [430] Photography drone photography [114, 171],
Advertisement mid-air advertisement [317, 382, 418, 475] Wearable Interactive Devices haptic interaction [443], fog screens [418], head-worn
projector for sharable AR scenes [168] Assistance and companionship elder care [65], personal assistant [239, 367, 368] Tour and exhibition guide tour
guide [58, 295], museum exhibition guide [168, 368], guiding crowds [475], indoor building guide [89], museum interactive display [112]

Industry 166 Figure: [21] — Manufacturing and Assembly joint assembly and manufacturing [21, 30, 43, 44, 80, 138–140, 161, 194, 231, 274, 283, 289, 297, 327, 366,
376, 396, 397, 410, 435, 454, 456, 493], grasping and manipulation [24–27, 33, 59, 67, 79, 132, 133, 137, 150, 153, 169, 185, 216, 226, 248, 255, 336, 342,
358, 379, 402], joint warehouse management [200], taping [105], tutorial and simulation [52], welding [303, 313, 413] Maintenance maintenance
of robots [144, 162, 252, 253, 285, 292, 302, 375], remote collaborative repair [31, 48, 74, 477], performance evaluation and monitoring [98, 103,
126, 128, 492], setup and calibration [61, 94, 120–123, 301, 306, 319, 323, 333, 352, 398, 487, 488], debugging [373] Safety and Inspection nuclear
detection [15, 234], drone monitoring [76, 114, 171, 184, 227, 332, 482, 494], safety feature [21, 44, 56, 66, 104, 160, 182, 282, 292, 372, 379, 385, 450],
cartoon-art warning [481], collaborative monitoring [363], ground monitoring [50, 73, 146, 211, 269, 380, 479, 484] Automation and Teleoperation
interactive programming interface [9, 12, 45, 47, 51, 62, 63, 66, 69, 93, 101, 104, 118, 124, 130, 131, 136, 143, 174, 177, 184, 188, 195, 201, 206, 207, 211,
212, 220, 227, 232, 251, 262, 270, 271, 284, 287, 288, 312, 315, 318, 324–326, 329, 385, 400, 407, 468, 474, 496] Logistics package delivery [265] Aerospace
surface exploration [54], teleoperated manipulator [310], spacecraft maintenance [470]

Entertainment 32 Figure: [350] — Games interactive treasure protection game [350], pong-like game [346, 370], labyrinth game [258], tangible game [49, 178, 230, 273],
educational game [412], air hockey [91, 451], tank battle [90, 221], adventure game [55], role-play game [229], checker [242], domino [246], ball
target throwing game [337], multiplayer game [115, 404], virtual playground [272] Storytelling immersive storytelling [328, 369, 395, 415, 467]
Enhanced Display immersive gaming and digital media [431]Music animated piano key press [472, 473], tangible tabletop music mixer [340] Festivals
festival greetings [382] Aquarium robotic and virtual fish [240]

Education and
Training

22 Figure: [445] — Remote Teaching remote live instruction [445] Training military training for working with robot teammates [199, 360, 362], piano
instruction [472, 473], robotic environment setup [142], robot assembly guide [18], driving review [11, 213], posture analysis and correction [183, 437]
Tangible Learning group activity [71, 275, 328, 337, 408, 412, 467], programming education [278, 416], educational tool [351]

Social Interac-
tion

21 Figure: [108] — Human-Robot Social Interaction reaction to human behaviors [93, 108, 109, 375, 406, 414], cartoon-art expression [377, 481], human-
like robot head [14], co-eating [134], teamwork [404], robots with virtual human-like body parts [158, 165, 180], trust building [141], task assignment
by robot [439–441, 465] Robot-Assisted Social Interaction projected text message conversations [382] Inter-Robot Interaction human-like robot
interaction [107]

Design and
Creative Tasks

11 Figure: [476] — Fabrication augmented 3D printer [476],interactive 3D modelling [341], augmented laser cutter [304], design simulation [52] and
evaluation [393] Design Tools circuit design guide [445], robotic debugging interface [145], design and annotation tool [96], augmenting physical 3D
objects [210] Theatre children’s play [10, 166]

Medical and
Health

36 Figure: [354] — Medical Assistance robotic-assisted surgery [13, 35, 77, 82, 84, 85, 92, 110, 125, 147, 164, 181, 190, 256, 264, 290, 309, 347, 354,
355, 384, 389, 409, 419, 420, 442, 459, 460, 485, 491], doctors doing hospital rounds [228], denture preparation rounds [196] Accessibility robotic
prostheses [86, 136] Rehabilitation autism rehabilitation [29], walking support [334]

Remote Collab-
oration

6 Figure: [242] — Remote Physical Synchronization physical manipulation by virtual avatar [242] Avatar enhancement life-sized avatar [197], floating
avatar [436, 475], life-sized avatar and surrounding objects [189] Human-like embodiment traffic police [149]

Mobility and
Transporta-
tion

13 Figure: [7] — Human-vehicle interaction projected guidance [2, 7], interaction with pedestrians [64, 88, 320], display for passengers [223] Augmented
Wheelchair projecting intentions [458], displaying virtual hands to convey intentions [300], self-navigating wheelchair [314], assistive features [495]
Navigation tangible 3D map [258], automobile navigation [438]

Search and Res-
cue

35 Figure: [363] — Ground search collaborative ground search [296, 343, 360, 362, 363], target detection and notification [211, 241, 266, 269, 305, 361,
468, 479], teleoperated ground search [54, 73, 102, 146, 156, 234, 237, 238, 267, 268, 365, 380, 417, 469, 483, 484, 486] Aerial search drone-assisted
search and rescue [114, 332, 482], target detection and highlight [464] Marine search teleoperated underwater search [233]

Workspace 9 Figure: [159] — Adaptive Workspaces individual and collaborative workspace transformation [159, 430, 431] SupportingWorkers reducing workload for
industrial robot programmers [407], mobile presentation [168, 257, 338], multitasking with reduced head turns [38], virtual object manipulation [357]

Data Physical-
ization

12 Physical Data Encoding physical bar charts [167, 429], embedded physical 3D bar charts [425] Scientific Physicalizationmathematical visualization [127,
243], terrain visualization [116, 117, 243–245, 308], medical data visualization [243] , Physicalizing Digital Content handheld shape-changing
display [258, 374]

Table 8: References of Section 10. Evaluation Strategies

Category Count Citations
Demonstration 97 Workshop [44, 45, 167, 244, 246, 274, 476], Theoretical Framework [200, 374], Example Applications [30, 47, 66, 84, 124, 127, 142, 145, 159, 174,

195, 197, 209, 210, 243, 245, 252, 265, 269, 315, 325, 341, 342, 366, 368, 382, 385, 418, 425, 431, 476, 481, 483, 496], Focus Groups [272, 467], Early
Demonstrations [24, 49, 53, 55, 82, 89, 96, 102, 104, 111, 115, 117, 136, 149, 162, 199, 216, 221, 239–241, 251, 255, 257, 270, 290, 305, 338, 346, 370, 375,
387, 400, 404, 408, 414, 436, 451, 479], Case Studies [65, 105, 189, 288, 324, 329], Conceptual [9, 220, 230, 271, 367, 472, 492]

Technical 83 Time [21, 48, 51, 59, 67, 69, 112, 126, 165, 171, 227, 284, 318, 358, 406, 417, 464, 486, 495], Accuracy [14, 15, 29, 58, 59, 64, 76, 84, 90, 101, 112, 124, 131,
150, 153, 165, 171, 181, 184, 226, 229, 232, 312, 317, 318, 320, 460, 464, 482, 486], System Performance [38, 59, 62, 63, 79, 91, 93, 118, 125, 128, 130–
132, 143, 168, 211, 282, 285, 302, 313, 319, 332, 334–336, 352, 355, 361, 363, 406, 468, 470], Success Rate [262, 314]

User Evalua-
tion

122 NASA TLX [15, 27, 33, 43, 63, 67, 69, 76, 112, 114, 125, 133, 160, 201, 226, 340, 358, 372, 377, 407], Interviews [64, 103, 114, 140, 158, 191, 369, 435, 443],
Questionnaires [11, 18, 25, 31, 48, 59, 98, 132, 134, 138, 150, 160, 169, 182, 183, 193, 223, 242, 267, 275, 300, 350, 373, 377, 393, 416, 417, 430, 445, 464, 495],
Lab Study with Users [12, 56, 169, 188, 328, 379, 415, 473], Qualitative Study [13, 21, 25, 52, 54, 138, 158, 163, 165, 263, 266, 289, 357, 429, 437, 438, 443,
494], Quantitative Study [11, 13, 19, 25, 38, 43, 54, 76, 85, 86, 107, 108, 111, 138, 140, 141, 165, 171, 180, 184, 193, 266, 289, 328, 357, 439, 448, 494], Lab
Study with Experts [10, 116, 340], Observational [58, 135, 258, 369, 382], User Feedback [135, 448]
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