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Figure 1. Reactile is a programming environment for swarm user interfaces. Reactile leverages physical demonstration for attribute abstraction and
specification of data binding in Swarm UIs. Figures show an overview of data physicalization example (A), and a workflow to create a graph using
Reactile (B-D). Reactile actuates a swarm of small magnets using PCB-based electromagnetic coils and displays program states using a projector.

ABSTRACT
We explore a new approach to programming swarm user in-
terfaces (Swarm UI) by leveraging direct physical manipu-
lation. Existing Swarm UI applications are written using a
robot programming framework: users work on a computer
screen and think in terms of low-level controls. In contrast,
our approach allows programmers to work in physical space
by directly manipulating objects and think in terms of high-
level interface design. Inspired by current UI programming
practices, we introduce a four-step workflow—create elements,
abstract attributes, specify behaviors, and propagate changes—
for Swarm UI programming. We propose a set of direct physi-
cal manipulation techniques to support each step in this work-
flow. To demonstrate these concepts, we developed Reac-
tile, a Swarm UI programming environment that actuates a
swarm of small magnets and displays spatial information of
program states using a DLP projector. Two user studies—an
in-class survey with 148 students and a lab interview with
eight participants—confirm that our approach is intuitive and
understandable for programming Swarm UIs.
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INTRODUCTION
In recent years, Swarm User Interfaces (Swarm UI) [22] have
emerged as a new paradigm of human-computer interaction.
While the idea of coordinated miniature robots was originally
proposed in the literature of swarm and micro-robotic sys-
tems [32, 36], HCI researchers have explored the use of these
robots as a user interface [22]. In such interface, swarm robots
can dynamically form shapes and morph to other shapes to
display information in response to user inputs and surrounding
environments [5, 21, 22]. Recent research has demonstrated
the great potential of Swarm UI in many application domains,
such as dynamic data physicalization [22], simulations and
problem-solving [31, 30], wearable and tangible displays [5,
21], and accessibility assistants [48]. This emerging interac-
tion paradigm opens up a new opportunity for practitioners to
build novel applications for Human-Swarm Interaction [21].

However, this opportunity is currently limited to highly skilled
programmers who are proficient in robot programming. For
typical programmers inexperienced in robot programming
who wish to build a Swarm UI application, it is unclear if
the robot programming approach is the most appropriate for
UI programming. To design interactive UI applications, pro-
grammers often must think in terms of higher-level design for
user interaction, whereas robot programming tends to focus
on low-level controls of sensors and actuators. Historically,
a novel UI platform is adopted only after the advent of an
effective programming tool that empowers a larger developer
community, and even end-users, to create many applications
for the platform; for example, HyperCard for interactive hyper-
media, Phidgets for physical interfaces, and Interface Builder
for GUI applications. We stipulate that current approaches
to programming Swarm UI are too robot-centric to be effec-
tive for building rich and interactive applications. Then, what
would be a better alternative?
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As a first step toward answering this question, this paper ex-
plores a new approach to programming Swarm UI applications.
To design an appropriate workflow for Swarm UI program-
ming, we look into existing UI programming paradigm for
inspiration. The common workflow of UI programming can
be decomposed into four basic steps: create elements, abstract
attributes, specify behaviors, and propagate changes. Based on
these insights, we propose the following four-step workflow
for Swarm UI programming: 1) creates shapes, 2) abstracts
shape attributes as variables, 3) specifies data-bindings be-
tween dynamic attributes, and 4) the system changes shapes
in response to user inputs (See Figure 2). With this work-
flow, a programmer can think in terms of high-level interface
and interaction design to build interactive Swarm UI appli-
cations, compared to existing, low-level, robot programming
approaches.

Moreover, given the physical nature of swarm user interfaces,
we propose to support this programming workflow via direct
physical manipulation. The motivation comes from an obser-
vation that the dominant programming environment is largely
limited to coding on a two-dimensional computer screen [1].
This arrangement creates a large gulf of execution [26]; de-
velopers must continuously switch contexts between writing
code on a screen and testing in physical space, which causes
a significant cognitive distance between physical and virtual
worlds [6]. To bridge this gulf, we present a set of direct
manipulation techniques to perform each step of Swarm UI
programming workflow. This approach allows a programmer
to write and view a program in the same physical context,
eliminating the aforementioned gulf.

To demonstrate these concepts, we developed Reactile, a pro-
gramming environment for Swarm UI applications. Reactile
actuates a swarm of small magnetic markers to move on a
2D canvas with electromagnetic force. We designed and fab-
ricated a board of electromagnetic coil arrays (3,200 coils),
which covers an 80 cm x 40 cm area. Reactile tracks the
marker positions and detects interactions between a user and
swarm markers using a standard RGB camera and computer
vision techniques. The system displays spatial information
using a DLP projector to allow a programmer to see program
states in the same physical context. We show the proposed
workflow and Reactile system can be effective to build vari-
ous interactive applications such as data physicalization and
explorable simulations.

To evaluate the proposed workflow and interaction design, we
conducted two user studies; 1) a large-scale in-class survey
with 148 students, and 2) an in-depth lab study with eight
participants. Participants generally agreed that the proposed
user interactions are intuitive (6.0), and the program is easy
to understand (6.1), modify (5.0), and flexible for various
applications (6.1), in response to 7-point Likert scale questions.
The survey study also shows that the majority of students
can understand the affordance of attribute abstraction (68-
87%) and correctly predict the dynamic program behavior (33-
46%). Based on qualitative feedback, we discuss three aspects
(usability, interpretability, and flexibility) of our approach and
draw design guidelines for Swarm UI programming.

In summary, we contribute:

• a design of the Swarm UI programming scheme, proposing
a four-step workflow informed by existing UI programming.

• a set of interaction techniques that leverage direct physical
manipulation to perform each step in this workflow.

• a demonstration of these concepts with Reactile, a working
prototype consisting of a hardware device that actuates a
swarm of magnetic markers and a software system that
tracks user interaction and displays spatial information of
program states.

• a mixed-method evaluation of our proposed approach,
which shows potential advantages.

BACKGROUND AND MOTIVATION
Recent work in HCI envisions the world beyond tangible
bits [16] where human interact with computers through dy-
namic physical objects. Under the vision of Programmable
Matter [49], Ultimate Display [45], and Radical Atoms [15],
research systems in actuated tangible interfaces [29, 33] and
shape-changing interfaces [7, 35] have demonstrated inter-
faces that can dynamically change their physical shape in
response to user interaction. In particular, a growing body
of research investigates the potential of utilizing swarm of
objects as user interfaces. Example applications include data
physicalization [17, 22], wearable and ambient displays [5,
21], dynamic physical affordances and constraints [31], simu-
lations and problem-solving [29], STEM education [27], and
accessibility for people with visual impairments [48]. Despite
such enthusiasm, it is still not easy to create swarm user in-
terfaces, as discussed above. In this section, we review prior
methods and current approaches to programming swarm user
interfaces and explain the motivation behind our work.

Toolkits for Robot Programming
Swarm user interfaces are usually implemented as a swarm of
robots that serve as interfaces between a host computer and
the users. However, most robotics research has been about
designing autonomous behaviors of a single robot, and existing
robot programming systems [2] are typically designed for that
purpose. Prior work has explored end-user robot programming
by simplifying the programming experience. For example,
the LEGO Mindstorms series1 provide a visual programming
environment in which children can control the behavior of
a LEGO-based robot. HCI researchers have explored using
a single mobile robot as user interfaces [11], using photos
of robots in the code editor to aid comprehension of posture
data [19], and using GUI to program cooking robots [43].

Only relatively recently has the community begin exploring
the potential of multi-robot systems, forming the research field
of swarm robotics [3]. While middleware and software li-
braries for robotics engineers help abstracting the hardware,
network, and algorithm layers, most do not provide special-
ized features for swarm robots, and using these libraries to
build a working swarm robotics systems typically requires
understanding complex layers of abstraction.

1LEGO Mindstorms. https://www.lego.com/en-us/mindstorms

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 199 Page 2

https://www.lego.com/en-us/mindstorms


To allow the programmer to see the status of robots, several
systems use the top-down view of the environment for showing
debugging information and defining the absolute coordinates.
Several middleware platforms [10] and toolkits [18] implement
such features and enable programming of multiple mobile
robots. In particular, Phybots [18] is designed for interaction
designers without prior knowledge of robot programming.
These toolkits were used in several HCI research projects that
involve multiple mobile robots [41, 43]. More recent work
includes Zooids [22], an open source hardware and software
framework specialized for building Swarm UIs.

However, these environments typically involve writing code
on a computer screen and then deploying the code to see re-
sults in the physical space. If the robot behaves unexpectedly,
the programmer must mentally map the error of the physical
robot back to the source code. This creates a large gulf of
execution for programmers and a great cognitive distance be-
tween physical and virtual spaces [6]. In contrast, we explore
an alternative approach where the program can be manipulated
through embodied interaction in the physical world.

Tangible Programming Languages
The idea of programming in the physical space is not new. Tan-
gible programming languages [46] leverage embodied phys-
ical interaction to construct a program. While conventional
programming languages use textual or visual representations,
tangible programming allows a programmer to manipulate
the structure of a program using physical objects [9, 12, 14,
25, 40, 54]. Prior work has shown that tangible programming
languages can be significantly more engaging than a visual pro-
gramming language, particularly in educational contexts [13].

However, while these systems make program structures tan-
gible, the program states are not visible and tangible in the
physical space. For example, users can manipulate control
flow of the program by constructing blocks that represent pro-
gram structures such as for loop and if else, but users
cannot see and manipulate the dynamic states of a program in
the physical space. In contrast, our approach shows dynamic
program states as spatial information. This approach enables
the user to see how the program behaves and understand the
program by manipulating tangible objects.

Programming by Demonstrations
To lower the barrier of programming, Programming by Demon-
strations aims to enable end-users to program robot behaviors
without writing code. For example, Topobo [34] lets a user
demonstrate a movement, which is recorded and can later be
played back to animate the robot.

However, since programming by demonstration generates the
program by an inference, it is difficult for users to explicitly
specify desired behaviors. In these cases, if the generated re-
sult is different from a programmer’s expectations, not enough
clue is provided to help the programmer understand the error
and fix it. In addition, in these systems, the internal states of
a program are hidden, but it is well known that the hidden
states make it difficult to understand and fix unexpected behav-
iors [24, 47]. Thus, existing programming by demonstration
systems are often used for simple repetitive operations of a

single robot. Our approach, by contrast, allows users to ex-
plicitly specify the program behavior, similar to the traditional
programming paradigm. While we also infer the attribute type
from the user’s demonstration in the attribute abstraction step,
the inference result can be always seen and fixed by the user.
We will show that this approach could be more effective to
program interactive behaviors of multiple robots.

Direct Physical Manipulation Interfaces
Direct manipulation techniques in the physical space have
been studied since 1990s [51, 55]. Such interfaces lever-
age embodied physical interaction to create static elements
(e.g., 3D models in Mockup Builder [4]) or interact with pre-
programmed behaviors (e.g., optical simulation in HOBIT [8]
or I/O Bulb [50]). However, there have been fewer investiga-
tions in direct manipulation of authoring dynamic behaviors.
Historically, authoring dynamic behaviors has been done by
coding as it requires abstraction [53], while recent research
started exploring the direct manipulation of dynamic behavior
in GUI applications [20, 38, 39, 52]. The core question in our
paper is how we can expand this to interfaces in the physical
world. While this paper specifically focuses on programming
of Swarm UI, we expect the direct manipulation programming
will become more important in spatial and physical interfaces,
such as tangible, augmented reality, and shape-changing inter-
faces.

DESIGNING SWARM UI PROGRAMMING
We propose Swarm UI Programming, a new approach to build-
ing Swarm UI applications that focus on high-level UI design.
The workflow of Swarm UI programming is inspired by the ex-
isting UI programming paradigm. We first review the common
workflow of UI programming and decompose it into four basic
elements that represent high-level steps. Then we discuss how
to apply this workflow to Swarm UI programming.

Four Elements of Existing UI Programming
As we see in well-known design patterns for interactive UI ap-
plications such as reactive programming paradigm, the Model-
View-Controller, and the observer pattern, they share a com-
mon workflow consisting of four basic elements: 1) create
elements, 2) abstract attributes, 3) specify behaviors, and
4) propagate changes.

Consider, for example, making an interactive web application
using HTML and JavaScript: 1) Create elements: A user
first creates basic elements of interface with HTML DOM
such as div, button, and text. 2) Abstract attributes:
Then, the user abstracts these attributes as variables, such
as the background color or font-size. These attributes can be
changed dynamically by updating variable values. 3) Spec-
ify behaviors: The user specifies behaviors to describe how
abstracted attributes will change with data-bindings. For ex-
ample, one can specify that the button’s background-color
will change in response to the text attribute of the input el-
ement. 4) Propagate changes: Based on the user-defined
data-bindings, the system automatically propagates the change
by detecting user input or data changes. For example, detect-
ing an input value such as “brown”, automatically changes the
background-color attribute of the button element.
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Four Elements of Swarm UI Programming
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Figure 2. Four basic elements of Web UI and Swarm UI programming.

Now, we draw a parallel between UI programming and Swarm
UI programming by introducing the following four-step work-
flow:

1. Create elements: In Swarm UI programming, we propose
that shapes are basic UI elements, as the swarm can rep-
resent information and communicate with a user through
changing shapes. A shape in Swarm UI comprises of a
swarm of small tangible objects. In this paper, we denote
each unit as a “marker” which can be either a robot or an
actuated tangible object.

2. Abstract attributes: As in a web application, a shape is
a static element. To dynamically change a shape, the user
must introduce attributes such as width, height, scale, posi-
tion, angle, radius, and curvature. For example, the user can
define an angle attribute of an arrow or a radius of a circle,
which can be changed through programming.

3. Specify behaviors: To make an interactive Swarm UI appli-
cation, the user can specify how a shape’s attributes change
when an event occurs. The event can be user input, changes
in the external data source, or the progress of time.

4. Propagate changes: Once the user specifies the behavior,
the system can watch for changes to the control unit. For
example, if someone moves the control marker, thereby
increasing x , the system automatically updates the arrow
shape’s angle attribute.

SWARM UI PROGRAMMING VIA DIRECT MANIPULATION
Given the physical nature of Swarm UIs, we propose to support
this programming workflow via direct physical manipulation.
Rather than coding in a separate IDE on a computer screen,
a programmer should be able to program a Swarm UI by
physically manipulating the swarm. To achieve this goal, we
propose the following direct manipulation workflow:

Step 1. Create Elements by Drawing and Construction
The first step to programming a swarm UI application is to
make shapes. A programmer can make shapes in two ways;
1) moving and arranging individual swarm markers into the
desired shape, 2) drawing the desired shape with a freehand
stroke. In either case, the hand-made shape need not be perfect.
The system should guess which basic shape (e.g., line, circle,
triangle, rectangle) the programmer is trying to make and
beautify it when possible. Then, a swarm of markers moves
to corresponding positions to form a shape. The user can also
manually modify the shape by placing or removing individual
markers.

Once a shape is made, the system constructs a class for that
shape and adds it to the program space. This allows the pro-
grammer to later abstract the attributes of the shape and clone
a shape as an instance. The current states of the program,
such as the set of shape classes and associated variables, is
visualized in a side panel as spatial information. Each shape
class is represented by a similarly shaped icon in the control
panel. To instantiate an object of the class, the programmer
first places a marker at a class window and then moves it to the
workspace, then markers in the surroundings form the shape.
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Figure 3. Create elements by drawing and construction. A programmer
can create elements by arranging markers or drawing the desired shape.

Figure 3 shows a programmer making an arrow shape in the
programming environment. The following pseudocode illus-
trates how a program evolves over the three steps. First, the
programmer draws a triangle (Figure 3A), then the system
adds a triangle in the program space.

1 < t r i a n g l e x=" 0 " y=" 10 " / >

By drawing a rectangle (Figure 3B), the system adds another
shape.

1 < t r i a n g l e x=" 0 " y=" 10 " / >
2 <rec tang le x=" 5 " y=" 15 " / >

The programmer can remove a horizontal line by directly
picking up markers and putting them aside (Figure 3C). Once
a shape is created, the environment adds the current shape as a
class the programmer can name.

1 <arrow x=" 0 " y=" 10 " / >

Step 2. Abstract Attributes through Demonstrations
One important aspect of programming is the ability to general-
ize a specific case using a higher-level abstraction. Suppose
a programmer has constructed an arrow shape and wants to
change its orientation. To do so, the programmer can ab-
stract an attribute of a defined shape by introducing a variable.
For example, the following pseudocode illustrates how this
operation can be done in a common programming language.
To change the orientation of the arrow, the programmer can
simply set a to a different value.

1 var a = 30
2 <arrow angle ={ a } x=" 0 " y=" 10 " / >

To support a programmer to abstract variables through direct
manipulation, we take inspiration from constraint-based draw-
ing [44]. Our system uses tangible constraint markers. To
define a variable to represent a certain shape attribute, a pro-
grammer puts constraint markers on an existing shape. The
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system environment infers which shape attribute the program-
mer is trying to demonstrate. For example, Figure 4 illustrates
how a programmer uses constraint markers and demonstra-
tions to define a variable to abstract angle attribute, as in the
pseudocode above.
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Figure 4. Abstracting attributes by demonstration. An arrow’s “angle”
attribute is abstracted as a variable using two constraint markers.

Different demonstrations can define different variables such
as position, width, height, scale, and orientation. For example,
Figure 5 shows other examples of abstracting A) a rectangle’s
scale attribute, B) a marker’s x position attribute, and C) an
angle of an arc shape.
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Figure 5. Using constraint markers to specify different shape attributes:
diagonal length (A), position (B), and angle (C).

If our system sees that the programmer exhibits a behavior
matching one of the heuristics above, it creates a variable
for the attribute suggested by the heuristic and adds it to the
program space. Each variable is visualized as a window con-
taining the shape’s icon and the attribute’s name.

Step 3. Specify Behaviors by Connecting Attributes
After creating shape classes and abstracting some of their at-
tributes as variables, the next step is to specify their behaviors.
To specify how certain attributes may change based on the
user input, the programmer can create a mapping function to
relate each variable. In the left panel where the program space
is visualized, variables already defined show up as individual
windows. To specify a data binding, the programmer selects
two variables, then the system adds a data binding to the pro-
gram space. It also provides visual feedback by showing a line
between the two variables.

Suppose a programmer wants to specify the following behav-
ior: when a point is dragged to the right, the angle of the
arrow rotates clockwise. The pseudocode implements this
behavior.

1 var a = 30;
2 var b = 10;
3 bind ( a , b )
4 <arrow angle ={ a } x=" 0 " y=" 10 " / >
5 < po in t x ={ b } / >

This implementation involves choosing a marker in the swarm
to be the control (line 5) and abstracting the marker’s x position

attribute as a new variable b (line 2). Then, a binding is
defined between a and b, using a pseudo-function bind() (line
3). Based on the current value (e.g., a = 30 and b = 10), the
system automatically creates an appropriate mapping function
(e.g., a = b + 20). If the user wants to define the different data
binding, the user can select different expression suggested by
the system (e.g., a = b * 3) or modify the expression (e.g, a
= b * 360 / 100). When the program is running, the system
can watch for changes in b and propagate the changes to
a, achieving the desired behavior—the arrow rotates as the
marker is moved right.

Step 4. Propagate Changes through Physical Interaction
Once a programmer specifies the behavior by connecting at-
tributes, the system automatically detects the change in the
value of the associated variable and propagates the changes.
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Figure 6. Specifying behaviors by creating bindings between vari-
ables. Once a programmer connects two attributes by placing selection
markers, then the system automatically binds them and propagates the
change.

Figure 6 shows how a programmer uses direct manipulation to
bind two variables to specify the dynamic behavior described
above. In A), he puts two markers on each variable’s window,
which is equivalent to bind(a, b) . In B), he drags the control
marker to the right; the arrow rotates accordingly. In C), he
drags the control marker to the left; the arrow rotates in the
opposite direction.

REACTILE: SYSTEM AND IMPLEMENTATION
To demonstrate these concepts, we developed Reactile, a work-
ing prototype for our proposed Swarm UI programming en-
vironment. Reactile’s hardware actuates a swarm of passive
magnetic markers, which are basic elements of a Swarm UI.
The use of passive markers does not fit in the strict definition of
Swarm UI [22], but the proposed workflow and programming
paradigm are general enough to be demonstrated on systems
with either passive markers or self-propelled elements. To
enable direct physical manipulation, Reactile tracks a set of
distinctively colored markers using a mounted standard RGB
camera and computer vision techniques. The dynamic pro-
gram states are displayed spatially in the same physical context
using a DLP projector. Reactile’s software and hardware are
open-sourced and available on GitHub 2. In the following, we
describe the hardware and software design and implementation
of Reactile system.

Hardware
Electromagnetic Actuation
In Reactile, a user interface consists of a swarm of passive
magnetic markers which move on a 2D workspace driven by
electromagnetic forces. Reactile uses a grid of electromagnetic
2https://github.com/ryosuzuki/reactile
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Figure 7. Reactile uses a field of electro-magnetic coils fabricated with a
standard PCB manufacturing. Each board has 16 x 40 coils and the final
prototype uses five boards to cover 80 cm x 40 cm area with 3,200 coils.
This board can actuate passive magnetic markers shown as red objects
with 10 mm diameter.

coils to actuate these magnetic markers. Running current
through the circuit coils generates a local magnetic field so
that each coil can attract a single magnet located within its area.
Each coil is aligned with a certain offset in both horizontal
and vertical direction with an effective area overlap, which
allows the coil to attract the magnet located in the adjacent
coil. We design electromagnetic coil arrays to be fabricated
with a standard printed circuit board (PCB) manufacturing
(Figure 7). This reduces the cost and fabrication complexity,
making it easy for the actuation area to scale up.

Top Layer

1st Layer

2nd Layer

Bottom Layer

Figure 8. A simplified schematic of our coil design of a 4-layer PCB.
Each layer has a set of coils aligned with a certain offset in both horizon-
tal and vertical directions. Each coil is 15 mm diameter and has 2.5 mm
overlap between nearby coils.

Figure 8 shows the simplified schematic of the coil design.
Our PCB design is a 4-layer board, and each layer contains
a set of coils, each of which has an identical circular shape
with a 15 mm diameter and a 2.5 mm overlap between nearby
coils. Each coil has 15 turns with 0.203 mm (8 mils) spac-
ing between lines, and the distance between centers of two
coils is approximately 10 mm, which makes a 10 mm grid
for attractive points. Due to the maximum size of the PCB
facility we used, a single board has 40 x 16 coils which approx-
imately covers a 40 cm x 16 cm area. We design the actuation
board to be scalable, so that we can extend the effective area
without any design changes. The final prototype covers an 80
cm x 40 cm area with 80 x 40 coils by aligning five identical
boards horizontally. The fabrication of each board costs ap-
proximately $80 USD, including manufacturing of PCB and
electronic components.

Passive Magnetic Marker
Each marker consists of an N48 neodymium disc magnet and a
3D printed cap. As shown in Figure 9, the magnet is attracted
with a local magnetic field generated by nearby coils. The
basic requirement for a magnet is that its size is large enough
to overlap with nearby coils (Figure 9). Thus, the minimum

size of magnets depends on the size of the coil and offsets.
In our prototype, the minimum size of the magnet is 6 mm
diameter, and we used magnets with 10 mm diameter.

turn on

magnetic marker

turn on

A B
Figure 9. An actuation mechanism of Reactile. Running current through
the coils generates a local magnetic field to attract magnetic markers
located within its area.

All electromagnetic coils generate the same direction of a
magnetic field to attract magnetic markers, similar to [42,
48]. Thus, each magnet is directed in the same direction (e.g.,
the north pole faces up and south pole faces down). As all
the magnets face the same direction, they are prevented from
attracting and connecting with others. The magnetic markers
repel each other if the distance between two markers becomes
closer than a certain distance. The minimum distance between
magnets depends on the diameter and strength of the magnets,
and in our prototype, this minimum distance is approximately
30 mm.

Marker Control
To produce a local magnetic field, we switch on the current
for each coil. As our board has 80 x 40 coils, it requires 3,200
switches to control each coil. To reduce the required switches,
we adopt a multiplexing technique for efficient current control.
Similar to LED displays, this approach only requires 80 + 40
switches to control 3,200 coils. On the other hand, this allows
us to control only one row at a time; By switching the current,
it can move multiple markers with a relatively high refresh
rate. In our settings, the system switches the current in 100
ms for each marker. For example, if there are 10 markers in
different row, it takes approximately 1 second (=100 ms x 10)
to move them independently (See Figure 10)..

P-ch MOSFETs

N
-ch M

O
SFETs

O
FF

OFF ON

O
N

ON

O
N

O
N

O
N

OFF OFF OFF

Figure 10. A control mechanism with push and pull pair of P-ch and
N-ch MOSFETs. While only one column (or row) can be turned on at
each time, switching with fast refresh rate (10Hz in our settings) allows
to move multiple magnets nearly simultaneously.

To switch the current on/off for each row and column, we
use the push and pull pair of P-channel and N-channel power
MOSFET transistors. To run the current through a coil, the
gate voltage of P-ch and N-ch MOSFETs should be set as
LOW and HIGH respectively. For example, to turn on the coil
at column 10 and row 8, we set P10 as LOW and the rest of
columns (P-ch) as HIGH, and N8 as HIGH and the rest of the
rows (N-ch) LOW.

CHI 2018 Paper CHI 2018, April 21–26, 2018, Montréal, QC, Canada

Paper 199 Page 6



The gate voltage of each MOSFET is controlled by daisy-
chained shift registers. The five boards share the same data,
latch, and clock pins of the shift register, so that only six pins
are required to control the 80 x 40 coils in the entire board.
The shift register is controlled by an Arduino microcontroller,
which communicates with a host computer through I2C com-
munication.

We used 74HC595 for 8-bit shift registers, MSS2P3 for diodes,
and AO3401 and AO3400 for P-ch and N-ch MOSFETs re-
spectively. All electric components are surface-mount parts
and are attached to the bottom layer; therefore, the top layer is
flat to allow the markers to move freely. The source voltage
for P-ch MOSFET comes from a 5.5V external power supply,
and the average and peak current for each coil were 0.4A and
1.2A respectively.

Software
Marker Tracking
To track the markers’ positions, we use a standard RGB camera
and computer vision techniques. The software first extracts an
image of the workspace by detecting white color and finding
the contours in the image. Then, we approximate contours
with polygonal curves to obtain the positions of the four edges
of the rectangle workspace. After extracting four edges of the
rectangle workspace, the system warps the input image with a
geometric transformation to eliminate distortion and fits the
image to the rectangular workspace.

Figure 11. We use computer vision to detect a rectangle workspace and
positions of the markers (A). The system uses detected position infor-
mation within 80 x 40 grid for path planning and controlling marker
movements (B).

To make it easy to track swarm markers, we color them in high
contrast colors. To track markers in an image, we first convert
the image’s color scale to hue, saturation, and value (HSV)
and detect a specific color with a lower and upper threshold
for each value. Then, the input image is converted to a binary-
colored image where the detected color is white and the rest is
black. The detected colored marker position is then calculated
as a relative position within the workspace by dividing its
horizontal position by 80 and vertical position by 40. We use
this technique to detect the standard red markers as well as
the other special markers including constraint markers (blue)
and selection markers (orange). Figure 11 A illustrates the
input image captured by the camera and detected workspace
highlighted with a red-lined rectangle. Figure 11 B shows the
position of each marker projected onto an 80 x 40 grid based on
the warped workspace. We used OpenCV for computer vision
and Logitech C920 for the RGB camera, which is mounted
100 cm above the table.

Shape Detection
Reactile allows a user to create elements by drawing and
construction. To enable this, the system lets the user draw

with a laser pointer and tracks the point using the same com-
puter vision technique. While the user is drawing a freeform
stroke, the system displays it using a DLP projector. Once
the user finishes drawing, the system beautifies the drawing
by inferring the possible shape type. We use the $1 unistroke
recognizer [56] for this purpose. This technique allows our
system to recognize a range of shapes with a few sample
strokes. When the system recognizes the shape, it converts
the freehand stroke into a more refined shape and displays the
shape as feedback using a projector.

Figure 12. Reactile allows a user to draw a basic shape with a laser
pointer. The system can converts freehand stroke into a beautified shape,
and then determines the target positions.

Target Assignment and Path Planning
After detecting a shape, our system needs to move swarm
markers to form the shape. Each swarm marker has a target
position to move to. To determine these target positions, we
use the Douglas-Peucker algorithm to sample n points along
the path where n is the number of markers. Also, we enforce
a minimum radial distance between markers so they do not
interfere magnetically.

Once a set of target positions are known, we use the Munkres
assignment algorithm to compute an optimal assignment of
these positions to individual markers. The optimization objec-
tive is to minimize the total distance traveled by all markers.
This assignment is dynamically updated at each step to more
efficiently allocate target positions.

Attributes Abstraction

Figure 13. Reactile lets a user to abstract attributes as variables through
demonstration with blue constraint markers. When the system detects
the demonstration, it updates the left panel to show a list of variables
and current states.

Each time a programmer creates a shape, the system adds a
shape class and displays it in the left panel. The programmer
can then use the constraint markers to specify an attribute to
abstract out as a variable. Constraint markers have blue color
and system separately detects the position of constraint mark-
ers. Once two constraint markers are placed on top of normal
markers, the system starts inferring the most probable shape
subject to the constraints. The system computes the relative
position of two markers and selects candidate constraints from
the available variable spaces. For example, Figure 13 illus-
trates how a user defines variables by placing two constraint
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markers on top of a rectangle shape. The different demonstra-
tions result in the different constraints: placing two markers
horizontally infers the width, while placing them vertically
infers the height as a variable.

Some constraints may have ambiguities. For example, if a
user puts one constraint marker at the origin and another at
(0, 10), the user can mean either the angle or the height of a
shape. In such cases, the system allows the user to move the
constraint markers for disambiguation. The system tracks the
delta of the positions when the user moves the markers as a
demonstration. For example, if the user moves one constraint
marker from [10,10] to [11,9], then the delta of the marker
is [1,−1]. The system calculates the cosine between the ini-
tial position (e.g., [10,10]) and the delta (e.g., [1,−1]), then
estimates an appropriate parameter. For example, if the user
rotates around the center (Figure 14B), then the system infers
as an “angle” attribute (e.g., cos = 0), while the user moves
one marker in the radial direction, then the system infers as a
“length” attribute (e.g., cos = 1).

Figure 14. Defining x, angle, and y variable by changing the location of
a single point marker.

Data-binding and Propagation
Once a user finishes defining variables, the system allows the
user to specify a data-binding by demonstration. To do so, the
user can simply place selection markers on top of a certain
variable in the left panel. When the user selects two variables
by placing selection markers, then the system automatically
creates a mapping function to specify the data-binding between
two variables.

Figure 15. The user can create a mapping function with orange selection
markers (e.g., rect.width = point.x - 5). Once the mapping function is
created, the system can automatically propagate changes whenever the
variable value is changed.

For example, Figure 15 A illustrates that a user connects a
rectangle’s width attribute and a single marker’s x position
attribute. Based on their current values (e.g., rect.width = 15
and point.x = 20), the system automatically creates rect.width
= point.x - 5 as a mapping function.

After defining data-bindings, the user can immediately interact
with the Swarm UI she just programmed by physically manip-
ulating the markers. For example, Figure 15 B and C show
that a user can change the width of the rectangle by moving a
marker to the right or the left. These variables can be not only
shape attributes, but also time-dependent variables or exter-
nal data sources. For example, Figure 16 shows that the user

can make a constant animation which rotates a rectangle by
connecting an angle variable to a time variable, whose value
constantly changes over time.

Figure 16. The user can also create a mapping function between at-
tributes and time-dependent variable for continuous animation.

POSSIBLE APPLICATION SCENARIOS
In this section, we present example applications to demonstrate
the capabilities of Swarm UI Programming. We specifically
describe two different categories to demonstrate how our work-
flow can support the programming of swarm user interfaces:
data physicalization and explorable simulations.

Data Physicalization
Data physicalization is a promising research area where
Swarm UIs can be useful [22], particularly to help blind peo-
ple understand and explore data [48]. While existing research
work have studied how users interact with data, there is rel-
atively less work investigating how users author their own
dynamic data physicalizations. Using Reactile, users can
“physicalize” data by connecting data values to representa-
tive shape attributes, such as the size of a circle or the length
of a line. This connection can be specified using the direct
manipulation techniques described above.

x

Data
month
temp

x = 1

x

Data
month
temp

x = 1

y y = 62

1 2 3 4 5 6 7 8 9 10 11 12 

60

70

80

A B C

y

Figure 17. An application example in data physicalization. A user de-
fines x and y attributes, then binds them respectively to month and tem-
perature data (A-B). The system propagates the value to each object (C).

For example, in Figure 1 and 17, a user wants to create a graph
that represents the temperature of a city throughout the year.
She first defines the x and y variables using a reference point.
When she connects the variable x to the month data (Figure 17
A), the system notices that the month data has twelve integer
values and automatically instantiates eleven more objects from
the same class and propagates to the next value with an one-
to-many mapping. In this way, the user now has twelve single
points that are horizontally distributed with different x values
(Figure 17 B). Next, she connects a variable y to temperature
data, and the system propagates the y value to each object
(Figure 17 C). In this way, the Swarm UI displays a 2D plot
whose x-axis represents the month and y-axis represents the
temperature of that month.

Explorable Simulations
Tangible representation serves as a powerful medium to engage
people with physical objects. Prior work has shown that two-
handed tangible interaction helps users to explore simulations
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and problem-solving [31]. With Reactile, users can not only
interact with such explorable simulations as a consumer, but
also create them as an author.

Mass of Sun
Rotation Speed

A B C
Figure 18. An application example in explorable simulation. A teacher
in a physics class can create tangible explanation on the fly, so that stu-
dents can interact with markers to see how the mass of the Sun affects
the orbit of the Earth.

For example, a teacher in a physics class wants to demonstrate
how the mass of the Sun affects the orbit of the Earth. First,
she makes a circle shape to represent the Sun and abstracts
the circle’s “radius” as a variable. Next, the teacher uses a
marker to represent the Earth; she makes it revolve around the
sun by connecting it to a time-dependent variable. She creates
two slider objects: one controls the radius of the Sun and the
other controls the velocity of the Earth’s orbit. To demonstrate
to her class, she holds the two slider objects and moves them
sideways simultaneously to animate the shape of the Sun and
the movement of the Earth (Figure 18 A). She shows that if
the difference between the two values is too big, the Earth
falls into the Sun or flies into outer space (Figure 18 B-C).
By showing this, the teacher interactively demonstrates how
gravity and the velocity of an orbiting object affect each other.

Ambient Display and Animation
Swarm UIs are also promising for ubiquitous interfaces which
show information as an ambient display [21]. Creating inter-
active animation of such displays could be also an interesting
application. For example, a user could make a timer or a
progress bar to indicate its status with Reactile. To make a ra-
dial progress bar, a user first creates an arc shape and abstract
its angle as a variable, so that she can bind the angle variable
to the real-time data. Then, when the progress data increases,
the arc becomes a circle shape to indicate its progress.

USER STUDY
We conducted a survey study and a lab study to understand
programmers’ experiences as well as the appropriateness of
our approach, focusing on the following research questions:

RQ1: Is the representation and behavior of a program easy
to understand, predict, and modify?
RQ2: Do programmers find the proposed interaction tech-
niques intuitive?

where, we used the term “intuitive” as “the behavior of the
interface is easy to expect”.

Participants
For the survey study, we recruited subjects from a large upper-
level computer science course. Students were expected to all
have prior programming experience. A total of 148 students
participated in our survey. Because the survey was anonymous,
we do not have demographics.

For the lab study, we recruited eight participants (7 male,
1 female), ages 19-31 (average: 24.3) years old from our
institution. Having prior programming experiences was an
inclusion criterion. All participants were from engineering
majors (4 computer science, 2 mechanical engineering, and 2
electronic engineering). Each session approximately took 45
minutes.

Method
For the survey study, we designed a set of quiz questions
to test to what extent participants were able to understand
the programming techniques we proposed for the four-step
workflow. Before seeing the questions, participants watched
a short demonstration video. Each question contained one or
more photos to illustrate a direct manipulation technique and
asked participants to predict the outcome by selecting from
four choices. Twelve questions were included in the survey.

For the lab study, the goal was to provide participants with
an opportunity to physically interact with our programming
environment. Each participant was explained the purpose of
the study, shown a demonstration of the system, and given
a simple programming task to perform. After the task was
finished, the participant received a short survey containing
eight questions. Five questions asked them if the proposed
interaction design was intuitive. The other three questions
examined the participants’ opinions on whether the program
is easy to understand and modify, and if the proposed interface
seems flexible for many different applications. Participants
answered on a 7-point Likert scale where 1 is strongly disagree
and 7 is strongly agree.

Result
Our survey study yielded mixed results. Participants per-
formed relatively well on the two quiz questions about the
prediction of Step 2 Abstract attribute with a correctness rate
of 67%(93/139) and 87%(128/146). Among those who got
incorrect answers, the most common type of confusion was
between the height attribute and the y attribute of a rectangle.
Note that because participants could skip questions, the n was
slightly different for each question.

On the three questions concerning Step 4, however, only
43%(58/135), 46%(59/129), and 33%(46/138) of the par-
ticipants answered correctly. The two questions that most chal-
lenged the participants concerned Step 3. Only 22%(30/138)
and 35%(44/126) of the participants answered correctly. The
accuracy rate was close to random. The results were below
our expectation. One reason could be that the survey instru-
ment did not provide the fully tangible interaction experience;
participants only saw video and photo illustrations.

Average Score (SD)
Overall user interactions 6.0 (0.7)
Step 1: Create elements 5.8 (0.6)
Step 2: Abstract attributes 5.5 (1.3)
Step 3: Specify behaviors 5.4 (1.2)
Step 4: Propagate changes 5.0 (1.3)
Easy to understand 6.1 (0.9)
Easy to modify 5.0 (1.6)
Flexible for different applications 6.1 (1.3)
Table 1. Summary of 7-point Likert-scale responses.
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Our lab study, on the other hand, showed more promising
results. Overall, participants had a positive view of their expe-
riences with our proposed Swarm UI programming environ-
ment. The table above shows a summary of 7-point Likert
scale response to each question. Overall, participants gen-
erally agreed that the proposed interaction techniques were
intuitive (6.0,σ = 0.7). Also, they thought that the program
was both easy to understand (6.0,σ = 0.7) and to modify
(5.0,σ = 1.6) and that it can be flexible for different applica-
tions (6.1,σ = 1.3). The next section discusses these results
to gain insights for an appropriate design for Swarm UI pro-
gramming.

DISCUSSION
Usability: The participants in our lab study generally agreed
that the proposed interactions are natural and intuitive, by stat-
ing that using two-hand interactions makes programming fun
(P7) and engaging (P8). Particularly, three participants, who
have prior experiences in robot programming, identified the
benefits of programming in the physical space. P1 mentioned
that how our approach reduces the barrier of programming
such swarm user interfaces by comparing it to his past expe-
rience in programming swarm robots; “while programming
these robots, I usually need to compile it, deploy, and see how
it works every single time.” (P1)

Moreover, participants are excited by the new opportunity
for users to create Swarm UI applications without program-
ming knowledge. For example, P2 saw a great potential for
classroom use such as in math education, stating that “One ap-
plication I had in mind was education. For example, teachers
in middle schools can teach geometry such as sine or cosine
by interactively demonstrating with these markers. Students
can also interact with it to understand math.” (P2)

Interpretability: Similar to survey study participants, some
lab study participants found it difficult to predict program be-
haviors. This difficulty might be due to the task design. In
general, participants may have difficulty with correctly under-
standing and predicting a program without actually construct-
ing it, particularly in an unfamiliar system or programming
language. Although participants generally agreed that Step
3 and Step 4 are easy to understand, they also commented
that these steps can be improved. For example, P3 suggested
that the system should visualize data-bindings directly on the
swarm markers, as opposed to in the left panel only. Indicating
the active attributes with highlighted auxiliary lines can help
improve the interpretability of variable mappings and specified
behaviors.

Flexibility: While contextual information helps, a separate
program space contributes to the flexibility and generalizabil-
ity of a program. For example, P4 stated that the displayed
information in the left panel was helpful for him to understand
the structure within a standardized view. Thus, one important
design implication is the need to make the appropriate connec-
tions between the abstract (e.g., variables and class) and the
concrete (e.g., shapes) spaces in order to enable better mental
models between these representations, while still maintaining
the flexibility and generalizability of the program.

Scalability: In the user study, P7 wondered if the program
could scale to more than a few shapes and attributes. One
way to handle a large number of shapes and parameters is to
provide contextual information which only shows the related
parameters or binding information in the left panel. As we see
similar experimental programming interface in GUI, such as
Apparatus [39] and Sketchpad14 [37], we expect this approach
can also handle scalability with a similar design.

LIMITATIONS AND FUTURE WORK
Although the proposed interactions were generally appreciated,
the technical limitations of our hardware prototype sometimes
limited the usability and capability of our approach. For ex-
ample, the refresh rate in the current implementation depends
on the number of objects and it becomes non-negligible as
the number of markers increases. While this can be addressed
through different implementations (e.g., using a transistor for
each coil instead of multiplexing), this prevented users from
receiving immediate feedback, making it difficult to predict a
program’s behavior (P1, P7). Another hardware limitation is
the information resolution. Although an individual marker is
small in size, the minimum distance between two markers (30
mm) prevents them from forming a high-density shape. We
also tested smaller and weaker magnets with N35 and 8 mm
diameter, which requires only 12-15 mm distance. However,
there is a trade-off with the weight of the marker. For example,
in the above case, if we attach a 3D printed cap (1.1 g), it can
become difficult to travel. However, we expect the minimum
distance can be decreased using a galvanized steel case [23].

While these limitations are not about our proposed interaction
techniques, having appropriate hardware can be crucial for
better programming experiences. The hardware design option
explored by this work is based on a swarm of simple, pas-
sive magnets actuated by a board. Another option for future
work is to explore other types of robots such as wheel-based
robots. One concern is that these robots may introduce cost
increases and additional technical challenges in coordinating
them as a swarm. However, we are seeing a growing body
of research projects [22] and commercial efforts to address
this concern [28], which can eventually lead to significant cost
reduction and make Swarm UIs practical in the near future.
This work contributes to that possible future by proposing a
programming paradigm people can use to create a range of
novel Swarm UI applications.

In terms of the capability of our programming paradigm, an
interesting discussion is how to extend our approach to addi-
tional dimensions. For example, P3 mentioned that additional
attributes such as color, texture, and z height can be helpful
for creating more expressive applications such as data visual-
izations, accessibility, and shape-displays. However, it is not
trivial to extend our approach to these modalities. For future
work, we will explore how our approach can be generalized to
these other application domains.
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